
ROB550-F19 ArmLab: Group 11 Report
Linyi Jin, Xi Lin, Nalin Bendapudi
{jinlinyi, bexilin, bnalin}@umich.edu

Abstract—This report chronicles our work on a robotic arm
called rexarm and the methodology to make it perform various
pick and place tasks autonomously. A gripper mechanism was
designed and 3D-printed so as to give an additional degree of
freedom to the the originally 5DOF rexarm and to make it grasp
40mm×40mm×40mm cubes efficiently. Perception was achieved
using a block detection algorithm with sensory inputs from a
RGB camera and a Kinect Depth sensor. The detected block poses
were fed into an inverse kinematics module which calculated the
initial and final joint angles and passed them on to the trajectory
generation module for path smoothing. A state machine was used
to govern the logic flow.

Index Terms—DH parameters, inverse kinematics, camera
calibration, object detection, state machine

I. INTRODUCTION

In this project, our group worked on a system with a 6
degree of freedom robot arm and a kinect RGB-D camera to
perform tasks such as block detection and placement. In the
following sections, we will explain the various parts of our
work.

II. GRIPPER DESIGN

Fig. 1. Gripper Assembly drawing

A. General Description

The three orthographic views of our gripper assembly are
shown in Fig. 1, which are composed of several part(from
low to high, ignoring motors): a wrist 3 motor base, a gripper
motor base, a gripper base, two links and two gripper boards.
The Gripping and releasing motions are achieved by gripper
boards sliding towards and away from each other, which
are controlled by the gripper motor through two links. The
maximum design interval between two gripper boards is 60
mm (The state shown in Fig. 1), and the minimum is 36 mm
(when gripper motor performs a 180 degree counterclockwise
rotation).

B. Design Process

We chose the structure of our gripper to be a double side
slider with two considerations: (1) it has a relatively large
moving range while having a relatively small size and light
weight. (2) In the case that one board is fixed, when the gripper
release a block, the block adjoins the fixed gripper board,
then its position could be easily affected by the movement
of the fixed board when it leaves. To determine the moving
range, we considered the blocks’ diagonal and side length,
being 53.2 mm and 37.6 mm respectively. Since the distance
between opposite holes on the motor panel is 12 mm, the
maximum moving range is 24 mm thus is enough to include
block dimensions. Besides, it’s possible that we need to attach
something to the gripper boards for increasing friction or
adjusting distance between them, we reserve 2 mm width for
both side, and decide the moving range to be 36 mm to 60
mm. Then, we made the size of gripper board to be a litter bit
larger than block surface, 40mm × 40 mm, and the interval
between slider to be also 40 mm. Dimensions of other parts
of gripper are determined according to the above dimensions
and motor size.

C. Actual Problems and Revision

We found that the actual range of gripper motor is 0 to
150 degree, but since we’ve reserved space for adjustment in
design, we could just attach a card board the inner surface of
one of the gripper boards to solve the problem. The second
issue is that the clearance between slider and slideway is
designed as 0.5 mm, but in 3D printing, some extra supporting
materials in the slide way take up the space. Thus we enlarged
the clearance to 1 mm and polished the slider. The third
problem is that in the first version of design, the contact surface
between slideway and gripper base is too small so that they
detached when a small force is applied. To make the gripper

base stronger, we added some extended triangular ribs between
slideway and gripper base.

III. TRAJECTORY GENERATION AND PATH SMOOTHING

In this part we generate a cubic polynomial trajectory for
the robot arm to move from one configuration to another.

A. Computation

The total time of trajectory T is estimated using the maxi-
mum angle changes among all joints, ∆θmax, and maximum
angle speed limit vmax. Because speed curve is parabolic,
equation (1) we have a upper bound estimation Tupper =
2∆θ/vmax.

∆θmax =

∫ T

0

vdt >
1

2
vmaxT (1)

Then we decide a coefficient α so that when T = αTupper =
2α∆θ/vmax, the actual maximum value of the speed curve is
quite close to vmax for vmax varies within a reasonable range.

For every joint, its angle in the start and end configuration,
respectively q0 and qf , are given, and we need to have zero
velocity at both points, thus v0 = vf = 0. We’ve known that
t0 = 0, tf = T , Then by solving equations (2) we get the
position and speed curve.

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0

v0 = a1 + 2a2t0 + 3a3t
2
0

qf = a0 + a1tf + a2t
2
f + a3t

3
f

vf = a1 + 2a2tf + 3a3t
2
f

(2)

To make robot arm move according the curves, we compute
the sequence of position and speed with interval dt = 0.05s
for every joint, then use function rexarm.set potisions() and
rexarm.set speeds() to give instructions to the robot arm.

B. Performance evaluation

The comparisons between performance of trajectories with
and without planning are shown in Fig.2-4. The low and high
speed are respectively 0.3m/s and 0.8m/s, which are the
maximum linear velocity limits, vmax, of all joints. In Fig.
2, the trajectories with planning are almost the same between
different speeds, but that without planning are quite distinct.
Besides, the velocity profiles in high speed also show clear
difference.

We plot angle and linear velocity variation of each joint at
high speed case in Fig. 3 and 4. It’s clear that compared to case
with planning, velocity of all joints in that without planning
increase to about vmax and drop to 0 with more steep slope,
requiring larger acceleration in both start and end section.
Thus robot arm has a larger jittering in no planning case,
which could affect its exact trajectory. In 3, joints reach target
angles at different time in no planning case, while for planning
case all joints reach their targets simultaneously, hence their
trajectories are different.

IV. KINEMATICS

A. Forward Kinematics

Seven frames (six for each joint and one for the end-
effector) have been identified and designated as per the DH
convention. The orientation of the frames are shown in Fig.5.
The values of the marked lengths in the figure were measured
and are summarized below:

l0 = 113.69± 0.01mm

l1 = 101.4± 0.01mm

l2 = 112.85± 0.01mm

l3 = 119.17± 0.01mm

The DH parameters according the frames marked in Fig.5
are given in the table below:

TABLE I
DH TABLE

Joint No (i) θi di ai αi

1 θ1 l0 0 −π/2
2 θ2 − π/2 0 l1 0
3 θ3 + π/2 0 0 π/2
4 θ4 l2 0 −π/2
5 θ5 0 0 π/2
6 θ6 l3 0 0

The homogeneous transformation matrix for joint i, that is
the transformation from frame i− 1 to frame i is given by:

T ii−1 =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1


(3)

Hence, the final pose of the end effector can be calculated in
the ground frame by recursively combining the transformations
of adjacent frames according to the following formula:

T i0 = T i−10 T ii−1 (4)

T i0 in eqn.4 will give the end-effector pose as a function of
joint variables [θ1, θ2, θ3, θ4, θ5, θ6]

B. Inverse Kinematics

Given a desired end effector pose, Inverse Kinematics tries
to find all possible configurations or return failure if it’s not
reachable. The problem could be decoupled into two parts: (1)
find the solutions for the first three joints given wrist center
position, (2) find the solutions for the last three joints given the
first solution and wrist orientation. The required computations
are demonstrated in the following parts.

1) Wrist Centre Position: The wrist-center (PW) is the
point where the last three axes meet. It can be calculated as
follows:

PW = P − b6R

0
0
1

 (5)

Fig. 2. Robot arm end effector trajectories and velocities

Fig. 3. Robot arm joints’ linear velocity variation with time

where P and R are the translation and rotation part of desired
end effector pose, and b6 is the joint offset of the 6th link.
Equation (5) implementation: kinematics.py, line 90-92.

2) Articulated 3R Joint Angles: Because Wrist center po-
sition is also the end effector position of first three links,
we could get the solutions for the first three joints through
geometry.

There are usually four solutions in this part(except for some
singular positions), which are shown in Fig. 6. Let PW =
[xw yw zw]T . For the first joint angle:

θ1 = atan2(yw, xw) or atan2(yw, xw) + π (6)

Where the first solution corresponds to the left two cases and
the second one to the right two. Equation (6) implementation:
kinematics.py, line 98-100. For the third joint:


r =

√
x2w + y2w

s = zw − l0
θ3 = ± cos−1

(
r2+s2−l21−l

2
2

2l1l2

) (7)

In equation (7), we need to first verify that the value
in the cos−1 is within [−1, 1], otherwise no solution. The
two solutions of θ3 correspond to higher and lower two
cases in Fig. 6 respectively. Equation (7) implementation:
kinematics.py, line 95-96, 104-111. Then, for the second joint,
its solution depends on θ1 and θ1:


α = atan2(s, r)
γ = atan2(l2sinθ3, l1 + l2cosθ3)
θ2 = π

2 − γ − α, if θ1 = atan2(yw, xw)
or

θ2 = −π2 − γ + α, if θ1 = atan2(yw, xw) + π

(8)

Equation (8) implementation: kinematics.py, line 114-119.

Fig. 4. Robot arm joints’ angle variation with time

3) Wrist Joint Angles: For a certain solution (θ1, θ2, θ3)
gotten from above, we can calculate the end effector pose of
the first three links R0

3:

R0
3 = Rz,θ1Rx,θ2Rx,θ3 (9)

Equation (9) implementation: kinematics.py, line 121 - 126.
Then the orientation of the last three joints could be computed:

R3
6 = (R0

3)−1R (10)

Equation (10) implementation: kinematics.py, line 129.
Since R3

6 can also directly written as a combination of last
three joint angles (θ4, θ5, θ6):

R3
6 =

c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5
s4c5c6 + c4s6 −s4c5c6 + c4c6 −s4s5

s5c6 −s5s6 c5

 (11)

In the above equation, ci = cos(θi), si = sin(θi). In this
part, there are two solutions exist, using equations (12) or (13):

 θ4 = atan2(R3
6(2, 3), R3

6(1, 3))
θ6 = atan2(R3

6(3, 2),−R3
6(3, 1))

θ5 = atan2(R3
6(1, 3)/cos(θ4), R3

6(3, 3))
(12)

 θ4 = atan2(R3
6(2, 3), R3

6(1, 3)) + π
θ6 = atan2(R3

6(3, 2),−R3
6(3, 1)) + π

θ5 = atan2(R3
6(1, 3)/cos(θ4), R3

6(3, 3))
(13)

Equation (12) and Equation (13) implementation: kinemat-
ics.py, line 131 - 153.

4) Joint limit verification: The computed solution does not
necessarily conform to the exact joint angle limits, thus we
need to have a check and remove those that don’t satisfy the
joint limits.

C. Evaluation

To exam the accuracy of our inverse kinematics, we select
some test positions in workspace coordinate to be end effector
positions (the center point of gripper). As for the rotation part
of end effector, we want the gripper to pointing exact down
for the convenience of measurement, thus rotating around
workspace x axis for π. Then the i-th test pose is:

Ti =

(
Rx,π Pi

0 1

)
(14)

We run the inverse kinematics function to move robot
arm to these positions with workspace coordinate (xd,yd,zd),
measure the exact workspace coordinate of the gripper center
(xa,ya,za), and compute the relative translation error with
respect to the designated positions. The results are summarized
in table II. From the table, we know the average relative trans-
lation error between expected positions and actual positions is
4.74%.

TABLE II
IK EVALUATION, UNIT [MM]

index xd yd zd xa ya za error(%)
1 130 130 100 125.78 140.04 95.36 5.66
2 -80 145 80 -83.68 147.77 77.35 2.89
3 -150 -60 30 -140.53 -59.57 25.29 6.44
4 60 -180 50 74.45 -173.91 43.79 8.60
5 145 -80 40 142.81 -75.55 37.62 3.23
6 170 100 60 164.58 107.45 57.39 4.64
7 -100 20 120 - 99.29 15.89 117.46 3.10
8 -150 -120 70 - 151.47 -125.27 65.96 3.33

V. CAMERA CALIBRATION AND BLOCK DETECTION

A. Camera Calibration

1) Camera Intrinsic: The camera intrinsic is obtained using
Chessboard multiplane calibration method implemented in

Fig. 5. Rexarm Schematic Diagram showing Joint Frames

OpenCV. The code adopted from the starter code. The intrinsic
is shown in Eqn. 15.

K =

526 0 300
0 527 274
0 0 1

 (15)

2) Depth Calibration: The depth value is calculated using
Eqn. 16.

Z = 0.1236× np.tan(d/2842.5 + 1.1863) (16)

The depth image is calibrated to align with the RGB image by
using mouse clicks to locate the four corners of the worksta-
tion. Assume the transformation between the depth image and
the RGB image is an Affine Transformation, satisfying Eqn.
17, which is a linear system with six unknowns. Each match
gives two linearly independent equations. Therefore, at least

Fig. 6. Four solutions for first three joints in non-singular position

three points are required to solve the equation. In our case,
we use four points to reduce the error. The transformation
equation can be written as

A · T = b.

We solve T by
T = (ATA)−1AT b


Λ

xi yi 0 0 1 0
0 0 xi yi 0 1

Λ



m1

m2

m3

m4

t1
t2

 =


Λ
x′i
y′i
Λ

 (17)

3) RGB to World Frame Calibration: In order to convert
from pixel space to world space, we must calculate the
transformation from pixel space to world space. To do so,
we take click on the four corners of the grid in world space,
which correspond to known locations in the real world. Similar
to the aligning depth frame to RGB frame, using Eqn. 17, we
align the RGB frame to the world coordinate where the origin
lies on the base joint of the arm.

4) Evaluation of Calibration: We verified the calibration by
measuring the difference between the world frame coordinate
calculated from RGB-D image and the actual world frame
coordinate measured by a ruler, Fig. 7 shows how we do
the evaluation. The results are shown in Table III and Fig. 8.
Column 1-3 is the XYZ location in the world frame measured
by the ruler, with the origin centered at the arm base joint, x
points to the right, y points to the top. Column 4-6 is the XYZ
location of world frame coordinate calculated from RGB-D
image. The last column shows the L2 error. From the result,
we can see if we fix the x and y location and change z, the
L2 error does not change significantly. Therefore, the depth
calibration is good. However, as we see the L2 error increases
when the xy location is far away from the origin, the intrinsic

calibration still has certain amount of error. But overall, the
error is within 1.5 cm and most of the errors are within 1cm.
We think the calibration is good enough to complete our tasks.

Fig. 7. Evaluation of calibration. We measure the location of the yellow dot
at the center of the cube and calculate the error.

TABLE III
EVALUATION OF CALIBRATION, UNIT [MM]

xgt ygt zgt xcam ycam zcam L2 Error
84 -102.66 43.47 88 -106 47 6.3
84 -102.66 82.07 86 -106 85 4.9
84 -102.66 120.67 90 -108 123 8.4
84 -102.66 159.27 86 -100 164 5.8
84 -102.66 197.87 87 -105 201 4.9
84 -102.66 236.47 86 -104 242 6.0

135 -153.96 43.47 143 -155 42 8.2
135 -153.96 82.07 141 -152 85 7.0
135 -153.96 120.67 144 -153 120 9.1
135 -153.96 159.27 142 -154 162 7.5
135 -153.96 197.87 144 -153 198 9.1
135 -153.96 236.47 141 -155 237 6.1
186 -205.26 43.47 194 -208 40 9.1
186 -205.26 82.07 193 -207 80 7.5
186 -205.26 120.67 195 -210 117 10.8
186 -205.26 159.27 198 -208 157 12.5
186 -205.26 197.87 198 -206 198 12.0
186 -205.26 236.47 197 -211 236 12.4

B. Block Detection

Block detection includes detecting the XYZ coordinates of
the blocks (Block localization) and classify the color of blocks
into 8 classes: Black, Red, Orange, Yellow, Green, Blue, Violet,
and Pink.

1) Block localization: We regard blocks as several blobs
and use Laplacian of Gaussian filter to detect blobs on
calibrated depth image. The whole process is shown in Fig
9. The magnitude of the Laplacian response will achieve a
maximum at the center of the blob, provided the scale of the
Laplacian is “matched” to the scale of the blob. The radius of
the blob we are detecting is related to the standard deviation
of the gaussian filter.

r =
√

2σ

Fig. 8. L2 Error of the real position of the yellow dot measured by the rule
and the position calculated by the system. The horizontal axis is changing in
z direction. Three colors of lines represent the distance to the origin in the
xy-plane.

The filter Laplacian of Gaussian filter is calculated as

LoG = ∇2
normg = σ2

(
∂2g

∂x2
+
∂2g

∂y2

)
The gaussian filter g will smooth the image and the laplacian
filter will give the gradient of the image. The response of a
derivative of Gaussian filter to a perfect step edge decreases
as σ increases. Since the Laplacian is the second Gaussian
derivative, so it is multiplied by σ2. Our detailed implemen-

Fig. 9. Detection of blobs with fixed radius on a testing image, circled in
green in the bottom right figure. Since the blocks we detect are of the same
size, using LoG is helpful in filtering out noises. Our detector generates less
false positive outputs compared to clustering methods.

tation is listed as follows:
1) Preprocess the depth image to remove noises and set

threshold to remove negative height and too large height
to exclude false positives.

2) Measure the radius r of the desired blob size and
calculate the standard deviation σ of the Gaussian filter.

3) Use scipy.ndimage.filters.gaussian filter to generate a
2D gaussian kernel of size (6σ + 1, 6σ + 1).

4) Use cv2.Laplacian to generate the Laplacian of Gaussian
kernel.

5) Use cv2.filter2D to get the response of the kernel.
6) Set a threshold and find location of all peaks in the

response.

2) Color Classification: To classify the color of the blocks,
we convert the color space to HSV by cv2.cvtColor and pick
HSV value of detected block in the previous section. We set
HSV ranges, shown in Table IV for each color and use this
range to determine the color of each block. If the HSV value
of detected block is not in any of the HSV ranges, we consider
it to be the background.

TABLE IV
THRESHOLDS IN HSV SPACE FOR DIFFERENT COLORS.

Color Hmin Smin Vmin Hmax Smax Vmax

red 110 146 118 134 210 200
green 33 37 100 66 105 218
blue 0 111 130 14 158 240
yellow 0 0 214 100 200 294
orange 108 87 206 122 201 294
black 129 0 41 160 61 166
pink 122 79 202 142 188 294
violet 146 70 93 170 123 228

3) Evaluation of Block Detection: To verify the accuracy
of the block detector, we place 16 blocks on the board
and measure the classification error as well as the block
localization error. The blocks are placed on the board in the
configuration shown in Fig. 10. We record ten consecutive
frames for the configuration and run block detector on each
frame. We then calculate the fraction of wrong colors and
error of location. The localization error with respect to the
block 2D location is shown in Fig. 11. The maximum error
is less than 15 mm and the mean is 9 mm. Among 10 frames
recorded, the color classification accuracy is shown in Table
V. Most of the color classification has 100% accuracy while
Black and Orange blocks are a little bit unstable. To make the
system robust to these errors. Since there is really low false
positive in the detection, the system check for several frames
and consider a detection positive so long as any frame has a
positive detection.

TABLE V
COLOR CLASSIFICATION RESULTS AMONG 10 FRAMES WHERE EVERY

COLOR APPEARS TWICE IN EACH FRAME.

False Negative False Positive Accuracy
Black 0.3 0 0.7
Red 0 0 1

Orange 0.3 0 0.7
Yellow 0 0 1
Green 0 0 1
Blue 0 0 1

Violet 0 0 1
Pink 0 0 1

Fig. 10. Evaluation of block detection. In this frame, all the block are detected,
however the color of one orange block is wrong.

Fig. 11. Block localization uncertainty vs. location on the board. Unit mm.

VI. COMPETITION

A. Gripper Performance

After printing the first version of gripper, we found some
problem in design and revise them as section II-C mentions.
The revised gripper is satisfactory and we never change any
part of it since then. As for improvement, the size of gripper
board could be larger so that gripping could be more stable.

B. Motion Planning Algorithm

The basic motion for robot arm is to pick a block from
one position and put it to another, we view it as a continuous
process and plan for it with Algorithm. 1(Function names here
are not the same as those in the code). We define five poses
as way points of the whole motion sequence.

1) Origin: The pose where all joint angles are 0, robot arm
go back to this pose when finishing pick and put motion. It’s
denoted by C0.

2) Pick Pose: The pose where gripper can pick the block,
denoted by C1.

3) Pick Preparation Pose: The pose that is higher than C1,
robot arm need to reach this pose first, then slowly descent to
C1. In this way, we can ensure that robot arm won’t hit the
block, It’s denoted by C2

4) Put Pose: The pose where gripper can put the block,
denoted by C3.

5) Put Preparation Pose: Similar to C2, It’s a pose higher
than C3, aiming at guaranteeing the safety and stability of put
motion. It’s denoted by C4.

Apart from the position of these poses, we also need to
specify orientation for them. We divide workspace x-y plane
into four parts, each part corresponds to a pose frame that is
gotten by rotate workspace frame about z axis for −π/2, 0,
π/2, π. Then we can decide rotation about z axis for a pick
position. grip angle In Algorithm. 1 are the candidate angles
for computing rotation about x axis, which control how much
the gripper point down. With Algorithm. 3, we could got the
orientation for poses. Note that the grip angle for pick pose and
put pose need to be the same, otherwise the block could roll
when putting. Then we loop through all candidate grip angles
for all poses, once an available motion sequence is found, we
plan a trajectory and execute it, otherwise return failure.

Algorithm 1 MotionPlanning
1: function MotionPlanning(pick position,put position)
2: for all grip angle do
3: angle = grip angle
4: C1 = GetAngles(angle, pick position)
5: if C1 is None then continue
6: for all grip angle do
7: pick prepare = pick position+height margin
8: C2 = GetAngles(grip angle, pick prepare)
9: if C2 is None then continue

10: C3 = GetAngles(angle, put position)
11: if C3 is None then continue
12: for all grip angle do
13: put prepare = put position+height margin
14: C4 = GetAngles(grip angle, put prepare)
15: if C4 is None then continue
16: sequence = [C2,C1,C2,C0,C4,C3,C4,C0]
17: return PlanTrajectory(sequence)
18: return None

C. Performance for Each Task

We have tried the first three task during competition. The
first task is simply stacking three blocks, we finished it
normally.

For the second task, we met a problem that our motion
planning algorithm failed to find solutions for some blocks,
so did not do well in this task. The reason is probably that we

Algorithm 2 GetAngles
1: function GetAngles(angle,position)
2: orientation = ComputeOrientation(angle,position)
3: pose = GetTransform(orientation,position)
4: joint anlges = InverseKinematics(pose)
5: if no solution for joint angles then return None
6: else return joint anlges

Algorithm 3 ComputeOrientation
1: function ComputeOrientation(angle,position)
2: if −position.x > |position.y| then rotate = −π/2
3: else if position.y > |position.x| then rotate = π
4: else if position.x > |position.y| then rotate = π/2
5: else then rotate = 0
6: return Rz,rotateRx,angle

require the pick and put pose to have the same gripping angle,
and try to plan trajectory that directly go from pick position
and put position. Then for some cases, like when the pick
position is far from robot arm and the put position is close to
it, it would be difficult to find a solution while having the grip
angle constraints.

For the third task, it’s lucky that we didn’t encounter
problem in task 2 and succeed to plan trajectory for all blocks.
Since our motion planning algorithm is designed to pick and
put blocks stably, we managed to stack 7 blocks.

D. Possible Improvements

Currently there are still some problems with our motion
planning algorithms.

Firstly, we does not consider the orientation of blocks,
and assume that workspace coordinate axes are orthogonal
or parallel to there surface. To solve it, we need to include
block orientation in Algorithm 3 and replace Rz,rotate with
it. Note that the gripper can access the block from four
orthogonal directions, so there are also four solutions for the
new Algorithm 3.

Besides, as it’s mentioned above in task 2, We met some
cases when there are solutions for pick and put motion sep-
arately but have no solutions when combining them together.
Thus if no solution could be found for going directly from
pick to put position, robot arm should try to pick the block
and put it to some intermediate positions, then go from there
to the put position.

VII. CONCLUSION

We finished all the parts in the check list and the first
three tasks in the final competition, and we gained practical
experiences in kinematics and computer vision through this
project.

