
1

ROB550-F19 BalanceBot: Team 12 Report
Ahmed Alkatheeri, Nalin Bendapudi, and Jianping Lin

{ahmedak, bnalin, jplin}@umich.edu

Abstract—This report chronicles our work on a mobile-
wheeled inverted pendulum and the methodology adopted
to balance it and steer it using a manual remote controller.
State space dynamics were formulated using the average
wheel angle, the body angle and their velocities as the four
states. A linear-quadratic regulator controller was designed
to balance the bot about the unstable equilibrium point.
A separate proportional controller was added to minimize
the in-plane rotation of the robot. The robot could also be
externally controlled using a manual DSM remote to make
it traverse any complex path.

Index Terms—LQR control, state space, dynamics, robot
control library, beaglebone

I. INTRODUCTION

Research of two-wheeled mobile robots has gained
increasing interest in the past few years due to the
emerging of many self-balancing personal transporters
such as the Segway [1] and the toys of two-wheel scoot-
ers. Despite the promising results of balancing itself,
efforts are still required to enhance the maneuverability
to navigate on various terrains and turn with sharp
corners. The two-wheeled mobile robots can be modeled
as a mobile-wheeled inverted-pendulum (MWIP), where
the control of the MWIP consists of the swing-up
and balancing. The swing-up control moves the stable
pendulum lying on the ground up to its unstable inverted
position, and the balancing control balances it about the
vertical. This controlling problem is highly nonlinear,
and many control techniques have been studied for the
control of these underactuated systems including the
feedback linearization [2], passivity-based control [3],
or the sliding-mode velocity control [4].

In this project, we focus on the balancing control of
the MWIP system. We assume the pendulum is vertical
initially and design a controller to balance upright even
when disturbed or when traversing a commanded path.
The balancing controller is based on the linear-quadratic
regulator (LQR) method, which is a feedback controller
for linear systems with minimized cost functions. We
conduct different tasks to navigate a set of waypoints as
fast as possible.

The rest of this report is organized as follows. In Sec-
tion II, we get the modeling of the system and measure
the required parameters. The balancing controller design

Authors are listed in alphabetical order. All team members con-
tributed equally to this project.

is shown in Section III, where the LQR method is ap-
plied. In Section IV, we design the manual control with
the ability to turn and change the heading of the robot.
Odometry and motion control is illustrated in Section V.
Section VI shows the results of the trajectory following.
Finally, we present the conclusion and discussion of the
project in Section VII.

II. SYSTEM MODELING

A. Dynamical Model of the System

Dynamics and Control of a Mobile Inverted Pendulum

Modified from: Saam Ostovari, Nick Morozovsky, Thomas Bewley

1 Equations of Motion

1.1 Free Body Diagrams

Where
mw = Mass of the wheel
mb= Mass of the body
Iw = Inertia of the wheel
Ib = Inertia of the body about the center of mass
τ= Torque from motors (input)
Rw= Radius of the wheel
L = Length from end to center of mass of the body
x = position of the the center of the wheel and base of the body
Px and Py = Reaction force between wheel and body in x and y direction, respectively
î and ĵ = unit vectors in the x and y direction, respectively
g = Gravity (9.81m/s2)

1.2 Kinematics
The position r of the center of mass (CM) of the body is:

r = xî− L sin(θ)̂i+ L cos(θ)ĵ (1)

The velocity ṙ of the body CM is then:

ṙ = ẋî− θ̇L cos θî− θ̇L sin θĵ (2)

1

Fig. 1: Free body diagrams of the MWIP system [5].

The free body diagram of the MWIP system is given
in Figure. 1, where θ and φ represent the body angle
and the wheel position. The terms mw and mb represent
the mass of the wheel and the upper body, respectively.
The inertia of the wheel and the body about the center
of mass is represented by Iw and Ib. The torque from
motors is represented by τ , while Rw represents the
radius of the wheel and L represents the length from
the end to the center of mass (COM) of the body.
Besides using the equations provided in the lecture notes,
we also derived the dynamical equations based on the
Euler-Lagrange equation [6]. The configuration vector
is defined as q = (θ, φ)T ∈ R2×1. The corresponding
Lagrangian is L(q, q̇) : TQ → R, which maps the
tangent bundle to a real value as

L(q, q̇) = K(q, q̇)− V (q) =
1

2
q̇TM(q)q̇ − V (q),

where K(q, q̇) is the kinetic energy based on the general-
ized mass/inertia matrix M(q), and V (q) is the potential
energy. The forced Euler-Lagrange system is with 4-



2

dimensional configuration space Q, and the correspond-
ing dynamics of L(q, q̇) are given as

d

dt
∂q̇L(q, q̇)− ∂qL(q, q̇) = B(q)τ, (1)

where τ ∈ R is the control input and B ∈ R4×1 maps the
inputs τ to the Euler-Lagrange system with rank(B) =
1. We can factor equation (1) into the common form as

M(q)q̈ + C(q, q̇)q̇ +N(q) = B(q)τ (2)

where C(q, q̇) is the Coriolis matrix, and N(q) is the
gradient of the potential energy V (q) along the general-
ized coordinates. To derive the state space model of the
system, we have

x = [qT , q̇T ]T = [θ, φ, θ̇, φ̇]T ,

and

ẋ =

[
q̇

M(q)−1[−C(q, q̇)q̇ −N(q) +B(q)τ ]

]
.

We controlled the motor voltage V by setting the
percentage duty cycle u of a PWM signal, where

τ = τsu−
τs
ωNL

ω,

where τs is the stall torque produced when the motor is
not moving, and ωNL is the no load speed that drives
the torque to 0. Plugging back τ into the dynamical
equations and notice that ω = φ̇ − θ̇, we have the
following linearized system around the equilibrium point
x∗ = [0 0 0 0], where
ẋ = Ax+Bu

=


0 0 1 0

0 0 0 1
a4a3
c1

0 − b2c3
a3c1

b2c3
a3c1

− a2a4
a1a3c1

0 b2c2
a1c1

− b2c2
a1c1

x+


0

− b1c3
a3c1

0
b1c2
a1c1

u,
where a1 = Iw + (mw + mb)R

2
w, a2 = mbRwL, a3 =

Ib +mbL
2, a4 = mbgL, b1 = 2τs, b2 = 2τs/ωNL, and

c1 = 1
a22
a1a3

, c2 = 1 + a2
a3

, c3 = 1 + a2
a1

. Since we are
interested in θ and φ, the observation is defined as

y = Cx+Du =

[
1 0 0 0

0 0 1 0

]
x,

where y is the output vector and D = 0 is the feed-
forward matrix.

B. Measurements

We used the method from the lab manual to calculate
the moment of inertia around the principle axes. As
shown in Figure 2, we had two wires with length L
carrying the robot. The distance between the wires was d.
The principle axis of the levelled object and the vertical
central line of the wires coincided. The object was
rotated manually around the principal axis by a small
angle. After the object was released, the periodic back-

Fig. 2: Bifilar Pendulum setup.

and-forth movement around the axis proceeded with its
swing period and moment of inertia derived as

T0 = 4π

√
JaxisL

m0gd2
, Jaxis =

m0gd
2

16π2L
T 2
0 .

For the y-axis, which is the most important axis for
balancing the bot, we recorded the velocity of the
oscillation from the IMU and calculated the average
period as T0 ≈ 3.5937[sec] in MatLab as shown in
Figure. 3. We used scales to measure the mass of the
wheel and the mass of the body without wheels as
mw = 0.0923[Kg] and mb = 1.1142[Kg], respectively.
The corresponding inertia of the body about center was
calculated by the equation as Ir = 0.0034[Kg · m2].
Similarly, the moment of inertia around other princi-
pal axes was calculated and the values are shown in
Table I. The inertia of the wheels were calculated by

TABLE I: Moments of Inertia around principal axes.

Axis Value [Kg ·m2]
x 0.0084
y 0.0034
z 0.0053

Iw = 2(Igb + 1
2mwR

2
w) = 0.0022[Kg ·m2], where Igb

is the inertial of motor armature and gearbox and we
assumed the mass of the wheel is uniformly distributed.

We measured the resistance of both motors and used
the provided script test_motor_params in the bin
folder to calculate the critical parameters for the motors.
Results are given in Table. II, where R represents the
motor coil resistance, and K represents the motor con-
stant. We also measured the coefficient b of the viscous
friction.

Other important parameters are shown in Table III.



3

0 5 10 15 20 25 30 35
-60

-40

-20

0

20

40

60

Fig. 3: Oscillation with respect to time around the Y-
axis.

TABLE II: Motor parameters for both motors from script
versus the manufacturer data.

Parameter Left Right Default
R[Ω] 6.6 9.8 5.7143

ωNL[rad/s] 39.6318 40.0155 38.7463
K[N ·m/A] 0.0140 0.0136 0.1412
τs[N ·m] 1.8182 1.2245 0.2966
b[N ·m · s] 0.0007 0.0006 N/A
Igb[Kg ·m2] 5.2624E-5 4.7297E-5 N/A

III. BALANCE CONTROLLER

A. Block Diagram and the LQR method

The block diagram of the system is shown in Figure 4.
For a continuous-time linear system ẋ = Ax+ Bu, the
LQR method defines a cost function J as

J =

∫ ∞
0

xTQx+ uTRu+ 2xTNudt,

and tries to find the feedback control law that min-
imizes the value of the cost by u = −Kx, where
K = R−1(BTP + NT ), and P is found by solving

𝑟𝑟
+
− +

+
𝑢𝑢

𝐵𝐵

𝐴𝐴

1
𝑠𝑠

�̇�𝑥 𝑥𝑥
𝐶𝐶

𝑦𝑦

𝐾𝐾

Fig. 4: Block diagram of the state-space equation.

TABLE III: General system parameters.

Parameter Value
Encoder Res (ticks/motor rev) 48

Gear ratio (motor rev/wheel rev) 20.4
Wheel radius Rw(m) 0.042± 0.001

Base length dbase (m) 0.223± 0.001

the continuous time algebraic Riccati equation
ATP + PA− (PB +N)R−1(BTP +NT ) +Q = 0,

where N = 0 for our case study. Putting back the control
law into the system, we have ẋ = (A − BK)x, where
the poles of the system, i.e., the eigenvalues of A −
BK, lie in the left half plane and the system is made
asymptotically stable with exponential converging speed.

We considered the discrete time system, as a
result, we used c2d in MatLab to convert the
continuous time system into a discrete time state space
equation, and got the corresponding {Ad, Bd, Cd, Dd}.
By using dlqr(A_d,B_d,C_d,D_d) in
MATLAB, we had the corresponding gain
K = [−4.8858,−0.5817,−0.0423,−0.1659] with
Q = diag(1, 0.01, 10, 100) and R = 2000. The control
law is u = r−Kx, where r is the extra step command.
To reduce the steady state error, we also considered the
integral of φ, where the state x was complemented with
one more term

∫
φdt. We had y = [θ, φ, φ̇]T to observe

the angle of the upper body, position, and velocity of
the robot. After tweaking the gain values and adding
the integral term, the final gain values reached was
K = [−4.8858,−0.5817,−0.0423,−0.1400,−0.0119].

B. Step Response of the Robot in Reality and Simulation

As shown in Figure 5, simulation requires more time
to achieve target position. That is because the system
was not modelled accurately and estimates were made
to obtain the parameters defining the system. As for the
real cases, we can observe high frequency oscillations
caused by the system balancing the robot to an upright
position. We tried to apply a low pass filter with a corner
frequency of 30 Hz to reduce those oscillations, but
that caused instability in the controller and it was no
longer able to maintain a certain position within ±0.1m.
Also, less oscillation are seen when the reference wheel
position is increased. That is because, with a bigger
difference between current wheel position and reference
wheel position, the controller prioritizes reducing the
difference instead of balancing the bot. So, smaller
perturbations in the body angle would not result in
immediate action by the controller. That resulted in a
shorter rise time as observed in the plots.



4

0 5 10

0

0.05

0.1

0 5 10

0

0.1

0.2

0.3

0 5 10

0

0.1

0.2

0.3

0.4

0.5

Fig. 5: From top to bottom: step response of the actual
robot to a change of 0.1 m, 0.3 m, and 0.5 m in reference
wheel position along with the simulated response of the
model.

0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4

0.6

0 1 2 3 4
-0.5

0

0.5

1

Fig. 6: From top to bottom: step response of the actual
robot to a change of 0.084 m/s, 0.21 m/s, and 0.42
m/s in reference body velocity along with the simulated
response of the model.



5

Figure 6 shows the experimental and simulated results
to the change of body velocities. A lot of vibrations
are observed and can be attributed to the controller
balancing the bot into an upright position, however,
the averaged body velocity achieves the desired value.
Again, we notice that the oscillations in the speed get
reduced when a bigger desired wheel speed is given to
the system. Reducing the difference between desired and
actual speed gets priority in the controller. Once the
difference gets reduced, the small perturbations in the
body angle start causing observable oscillations.

C. Updating the States and Calculating the Output

The application of the controller in the program re-
quired obtaining measurements of the states defined in
subsection III-A. The first of which was the body angle
(θ). The IMU used in the system along with the Robot
Control Library provided this angle. Similarly, the
rate of change of the body angle (θ̇) was obtained. As
for the wheel angle (φ), equation (3) was used to obtain
the angles of the left and right wheels separately. The
equation converts the number of encoder ticks to an
angle in radians. It adds the angle (θ) to cancel out
the effect of the body angle on the encoder readings.
Then, the average angle of the balancebot wheels (φ)
was obtained using equation (4).

φW =
2π ∗ EncoderT icksW

EncoderResolution ∗GearRatio + θ (3)

φ = (φRW + φLW )/2 (4)

The rate of change of the wheel angle (φ̇) was obtained
by retaining the previous value of the wheel angle and
using equation (5). In the equation, DT is the sampling
time of the measurements, which was 0.01 s in this
case since the sampling loop was repeated at a 100 Hz
frequency.

φ̇ =
δφ

δt
=
φ− φprevious

DT
(5)

Finally, the integral of the wheel angle was calculated
using equation (6). The integral term retains its value
between iterations and is reset to 0 when the difference
between the desired wheel angle and current wheel angle
is bigger than a threshold of 10 radians.

φintegral = φintegral + φ ∗DT (6)

With the states measured, the duty cycle output (u) was
calculated using the following controller equation. The
same output was given to both wheels.
u = K1 ∗ (θ − θdesired) +K2 ∗ (θ̇)

+K3 ∗ (φintegral − φintegral,desired)
+K4 ∗ (φ− φdesired) +K5 ∗ (φ̇− φ̇desired) (7)

IV. MANUAL CONTROL

A. Heading Controller

To control the MWIP either manually or au-
tonomously, we need to ensure that the robot is heading
in the direction we intend it to. More often than not,
the angular displacement of both the wheels is different
from each other even though the duty cycle provided
to both motors is the same. This maybe because of the
difference in characteristics of the left and right motors,
or difference in wheel sizes. That difference between the
angles of the wheels causes the heading angle to change.

To control the heading angle, we employed a simple
proportional controller. First we need to calculate the
heading angle (γ) using the balance-bot parameters and
sensor values. There are two ways to obtain the heading
angle, the first is to simply read the gyro data from the
IMU. The second is to use the difference in wheel angles
between left and write as shown in equation (8).

γ =
Rw
dbase

(φRW − φLW ) (8)

Here φRW and φLW are the encoder readings from the
left and right encoders, Rw is the radius of the wheels
and dbase is the length of the base of the balancebot.

The duty cycle of the left and right motors are modi-
fied according to a proportional gain term, corresponding
to the error in heading angle.

uL = u+Kg(γdesired − γ) (9)
uR = u−Kg(γdesired − γ) (10)

where Kg is the proportional gain and γdesired is the de-
sired heading angle. If we want the MWIP to balance in
place, γdesired should be zero. Otherwise, it is obtained
through the manual steering input. The gain Kg had to
be tuned to achieve good observable performance. The
optimum value was simply 1.

0 50 100 150 200 250 300 350

Time (ms)

0

0.5

1

1.5

2

2.5

3

3.5

H
ea

di
ng

 a
ng

le
 (

ra
di

an
s)

des

encoder

gyro

Fig. 7: Step Response of the robot to a change in three
radians in the reference heading angle



6

To test the performance of the controller, a step input
of γdesired = 3 rad was provided and the response is
recorded in Figure 7. We note that the γgyro, which is
the heading angle measured using the IMU achieves the
given input in about 200ms using the proportional gain
controller. Also note that the heading angle calculated
from wheel angles, γencoder is quite different from
that of the gyro. This could be due to a number of
environmental and systematic errors. This is discussed
in detail in Section V.

B. RC Controller

A DSM receiver-transmitter was used to re-
motely communicate with the BeagleBone. The binary
rc_bind_dsm was used to bind the remote controller
to a receiver connected to the BeagleBone. Next, the bi-
nary file rc_test_dsm was run to get the exact values
transmitted by the remote. rc_calibrate_dsm could
be used to calibrate the values. By doing this we could
find out which channels represented which buttons on
the transmitter, and what’s its corresponding range of
values. Finally only 3 channels were used:

1) Channel 3: This was used to move the bot forward
or backward. We changed the rate of change of
φdesired proportionally with the values of channel
3.

2) Channel 4: This was used to turn the bot left or
right. We changed the rate of change of γdesired
proportionally with the values of channel 4.

3) Channel 5: This gave a discrete output. We used
this to switch between manual and autonomous
mode.

V. ODOMETRY AND MOTION CONTROL

The application of odometry enables a system to
take upper level instructions such as desired position
or orientation and follow them. With odometry, the
balancebot could get a list of waypoints that it can follow
to reach a certain target.

A. Odometry Measurements

All the necessary parameters are mentioned in Table
III in Section II. Equation (4) was used to obtain the
average wheel angle. Equation (11) then calculated the
actual distance travelled in meters based on the average
radius of the wheels (Rw).

distance = φ ∗Rw (11)

As for the orientaion of the balancebot (γ), the compar-
ison was made between the gyro-obtained angle and the
encoder-obtained angle in Section IV. It was decided
to use the angle obtained from the gyro since it was
more reliable and consistent with actual measurements.

As for the encoder-obtained orientation angle, there is
a number of possible errors that would cause it to lose
accuracy. Those errors, systematic and environmental,
affect the system in ways that are not captured in the
encoder readings. Those errors include:

1) Differences in wheel diameters
2) Error in base length measurement
3) Slipping of the wheel(s)
4) Uneven floors
5) Hitting obstacles
6) Differences in motor characteristics

One of the possible issues with dependence on the IMU
reading for the orientation angle was the possibility of
a drift in the readings after a certain duration. For the
application of the balancebot and the intended tasks,
reliable orientation readings were not necessary for a
long duration. That is why no logic was implemented
to fuse (γencoder) and (γgyro) into an overall orientation
angle.

B. Error Correction in Odometry

It was decided to pursue correcting the systematic
errors to increase the accuracy of the balancebot sen-
sors and reduce any deviation in the desired trajectory.
The specific errors pursued were difference in wheel
diameters between right and left wheel, as well as any
error in the measurement of the base length. Those errors
were pursued because they are assumed to be the major
sources of error in the balancebot. The process followed
to characterize the error is described in article [7]. The
first step was to have the balancebot moved around a
square of known edge length while the x and y coordi-
nates were measured. The final coordinates after a loop
was completed should be (0,0), however, because of the
systematic errors, they were not. That difference would
be referred to as the error. Multiple loops were completed
in both clockwise and counterclockwise directions to get
an average of the error. Table (IV) shows the obtained
error. Then, the equations were followed to obtain a

TABLE IV: Odometry Average Error.

Parameter Clockwise Counter Clockwise
ex (m) 0.0305 0.00579
ey (m) -0.0216 -0.0104

characterization of both the wheel diameter error (Ed)
and base length error (Eb). L mentioned in the equations
is the length of the edge of the square, which was 1 m.
Since two equations were provided for each (β) and (α),
the average of the results was calculated and used.
β =

ex,CW − ex,CCW
−4L

or β =
ey,CW + ey,CCW

−4L
(12)



7

α =
ex,CW + ex,CCW

−4L
or α =

ey,CW − ey,CCW
−4L

(13)
By plugging in those results and the value of L into the
equation of (Ed) from [7], equation (14) was obtained.
Equation (15) shows how (Eb) was obtained.

Ed =
1 + dbaseSin(β2 )

1− dbaseSin(β2 )
(14)

Eb =
π
2

π
2 − α

(15)

Table (V) shows the results obtained from those equa-
tions. (Eb) can be used to obtain a corrected (dbase)

TABLE V: Odometry Error Characterization.

Parameter Value
β (rad) 0.000907
α (rad) -0.00314
Ed 1.0002
Eb 0.998

by multiplying it with the current (dbase). That changed
the value of (dbase) from 0.223 m to 0.222 m. As for
(Ed), equations (16) and (17) can be used to obtain
a corrected wheel angle for the left and right wheels
respectively. [7] The value found for (Ed) was small
enough that when multiplied by the wheel diameter,
it was not changed within the considered significant
figures. Those corrections were not implemented since
they would only become apparent with prolonged usage,
which was avoided during the implementation of the
desired tasks.

Corrected φLW = φLW ∗
2

Ed + 1
(16)

Corrected φRW = φRW ∗
2

1
Ed

+ 1
(17)

C. Odometry Controller

To get the system to travel a certain distance or follow
a certain path, the application of a higher level controller
was necessary. To change the setpoint of either distance
(φ) or orientation (γ) to a value that is far from the
current state would throw the system out of balance.
Instead, the the system was provided with incremental
setpoints that were followed until the overall setpoint
was reached. The following equations were used to pro-
vide those incremental setpoints to the LQR controller.
First, for the balancebot to travel an arbitrary distance
(distanceoverall), equation 18 was used to obtain a final
wheel angle.

φfinal =
distanceoverall

Rw
(18)

Then, that final wheel angle was used in a conditional
statement that affected the setpoints of (φ), (φ̇), and
(θ) as shown in the following equations. While the
wheel angle setpoint (φdesired) is less than (φfinal), the
equations were used to obtain new desired setpoints for
those states. Once that condition no longer held, the
states were set to maintain (φfinal).

φ̇desired =
0.4

Rw
(19)

φdesired = φ+ 6 ∗ φ̇desired ∗ dt (20)

θdesired = 0.001 ∗ φ̇desired (21)

Equation (19) sets the desired speed of the wheels to
0.4 m/s. This speed was found through trials to find the
fastest possible speed without the system going out of
balance. Equations (20) and (21) were used to provide
the system with setpoints for the positional angles so that
they do not conflict with the desired (φ̇) and cause the
terms in the controller equation to cancel each other out.
As for the desired orientation (γdesired), it was observed
that giving the system a step of (π) did not cause it to go
out of control. With that, logic similar to the one used for
the desired distance above can be implemented to get to
a desired orientation. Considering that the gyro returns
an orientation angle between (-π) and (π), any desired
orientation angle would need to be within that range.
The following equations were found to get a normalized
desired orientation angle.
normalized γdesired = (2π) ∗ (γdesired%(2π)) + π

(22)
Where (%) is the remainder symbol. This would return
a desired orientation between (-π) and (3π). A (2π) is
subtracted from that if it yielded a result over (π). That
allows for a result that is between (-π) and (π). Then, any
desired orientation can be reached in a maximum of two
incremental setpoints each having a maximum value of
(π). This can be improved further by utilizing conditions
that find the shortest distance between the setpoint and
current orientation. One possible implementation of this
is to check the difference between desired and current
orientation. If the distance was more than (π) then the
controller would need to flip the direction of rotation.
Considering the defined tasks for the balancebot, a max-
imum change in orientation angle of (π2 ) was necessary.
Therefore, this logic was not implemented, however, it
can be a possible improvement on the system.

VI. TRAJECTORY FOLLOWING

Figure (8) shows the readings from the balancebot
while given the task of going around a square with
0.9 m edge length. In real life, the bot was observed
to follow the square lines, however, the encoders do
not show that exactly. The way the distance controller



8

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 8: The trajectory as determined by odometry (gyro
based) and the “ground truth”.

was implemented, as discussed in section V, was not
perfected to reach a desired location with no overshoot.
The desired speed was set to maximum while the desired
position was not reached. That does not allow the system
to slow down if the target location was closer. Instead,
it is observable that the balancebot goes beyond the
desired position and then returns to the setpoint. Another
noticeable issue is the calibration of the LQR controller.
The controller was not calibrated to allow the wheel
angle (φ) to maintain a desired location. Instead, there
is a steady state offset that was not removed completely.
The overall shape of the motion was promising. With a
few changes to the controllers, the square-shaped motion
could be followed perfectly.

VII. CONCLUSION

Overall, an LQR controller was designed and used to
balance the system as well as control its motion. Higher
level controllers were designed to control the distance
travelled and orientation of the system. The outcome
showed a very stable balancebot when faced with any
external disturbance. It could maintain an average po-
sition and speed within 20% of the desired respective
values. And all the parts in the check list were completed
as well as all the tasks in the competition. Even though
the goal was reached, there are still many issues that
can be tackled. The balance controller we designed was
stable when faced with external disturbances but couldn’t
hold a constant position within a ±0.05m. The forward
velocity of the robot was limited since the controller
was trying to stabilize θ at 0 irrespective of the given
velocity. The distance controller outputs a maximum
speed request instead of giving a speed proportional
to the distance to be travelled. The dependence on the
orientation angle from the gyro would introduce errors

with prolonged tasks. Those are all possible areas where
the system can be improved if more time was given.

REFERENCES

[1] “Segway personal transportation that simply moves you,”
http://www.https://www.segway.com/, accessed: 2019-11-06.

[2] M. W. Spong, “The swing up control problem for the acrobot,”
IEEE control systems magazine, vol. 15, no. 1, pp. 49–55, 1995.

[3] I. Fantoni, R. Lozano, and M. W. Spong, “Energy based control of
the pendubot,” IEEE Transactions on Automatic Control, vol. 45,
no. 4, pp. 725–729, 2000.

[4] J. Huang, Z.-H. Guan, T. Matsuno, T. Fukuda, and K. Sekiyama,
“Sliding-mode velocity control of mobile-wheeled inverted-
pendulum systems,” IEEE Transactions on robotics, vol. 26, no. 4,
pp. 750–758, 2010.

[5] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control. Wiley, 2005. [Online]. Available:
https://books.google.com/books?id=wGapQAAACAAJ

[6] R. M. Murray, A mathematical introduction to robotic manipula-
tion. CRC press, 2017.

[7] J. Borenstein and Liqiang Feng, “Measurement and correction of
systematic odometry errors in mobile robots,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 6, pp. 869–880, Dec
1996.


