
1

Team 14 ROB 550 BotLab Report
Xiangyu Peng, Xi Lin, Steven Schulte, Nalin Bendapudi

{xypeng, bexilin, spschul, bnalin}@umich.edu

Abstract— This report chronicles our work on a differ-
ential drive ground robot, and the methodology adopted
to make it simultaneously map and localize itself in an
unknown territory. The motion controller for this robot
was used odometry signals from IMU and encoders. A
LIDAR sensor was used to do SLAM. SLAM involved
mapping using Breshenham’s Algorithm and localization
using a particle filter. The robot could also autonomously
search for new frontiers on the map and plan a path to
the frontiers using A-star path planning.

Index Terms—Monte-Carlo localization, Mapping,
Particle-filter SLAM, A-star Planning, Exploration

I. INTRODUCTION

RESEARCH on ground-based autonomous systems
has been an evergreen topic in robotics. While the

control of differential drive robots has become an easy
task, mapping of uncertain environments and simulta-
neous localization of a robotic system still poses many
interesting challenges. The applications of Simultaneous
Localization and Mapping (SLAM) based systems range
from defence to space.

In this project, we implement SLAM on a bot and use
it to navigate through a maze. The bot searches for new
frontiers on the map and plans a path towards them in
order to explore them. This project also included various
other tasks such as tuning the motion controller of the
bot, implementing a state machine for the arm on the
robot, and integrating it with the SLAM and motion
planner.

The rest of the report is organised as follows. In
section II we discuss the action model, sensor model and
particle filter used in our localization,and we also discuss
the algorithms used in mapping. In this section we report
the effectiveness of our SLAM when implemented on
Raspberry Pi. In section III we discuss our planning and
exploration algorithms. Finally, in section IV we discuss
our performance in various competition tasks.

II. SIMULTANEOUS LOCALIZATION AND MAPPING

In this section, we introduce the various components
of our SLAM implementation. The block diagram in Fig.
1 shows the overall picture.

A. Mapping

The mapping algorithm relies on Bresenham’s algo-
rithm, a technique for finding the discrete cells that lie

Fig. 1: Block Diagram of SLAM

on the path of a ray (in this case, a ray from a Lidar scan).
This algorithm is presented in Algorithm 1. Bresenham’s
algorithm produces a list of all of the cells that each ray
passes through, and the map log odds are updated so
that the spaces that the ray passes through (which are
likely free) are more likely to be free and the spaces
where the ray terminates (likely some kind of obstacle
blocking the path of the light) are updated so that they
are more likely to be occupied.

The occupancy-grid mapping algorithm
Using only mapping on the log file

obstacle_slam_10mx10m_5cm.log, the mapping
algorithm produced the map shown in Fig. 2.

B. Monte Carlo Localization

We perform a version of Monte Carlo Localization
called particle filtering. Here, we explain first the action
model and sensor models that are used to estimate the
motion of the robot and the way the sensors provide
data given a fixed map, respectively, and then explain
more about how the particle filter uses those models to
localize.

1) Action Model: In order to implement Monte Carlo
localization (discussed later), we needed to implement
an action model, which is a model for how the robot
moves when taking an action. In this case, we use



2

Algorithm 1 Bresenham’s Algorithm

1: function Bresenham(start, end, grid)
2: dx = abs(start.x-end.x)
3: dy = abs(start.y-end.y)
4: sx = abs(start.x < end.x? 1 : −1)
5: sy = abs(start.y < end.y? 1 : −1)
6: err = dx-dy
7: x=start.x
8: y=start.y
9: cells=φ

10: while(x!=x1 or y!=y1)
11: cells.pushBack(cell(x,y))
12: e2 = 2×err
13: if e2 >= −dy
14: err -= dy
15: x += sx
16: if e2 <= dx
17: err += dx
18: y += sy
19: return cells

Algorithm 2 Occupancy-Grid Mapping

1: function Mapping(scan, pose, map)
2: for all rays in scan do
3: start point = GlobalToGrid(pose.x, pose.y)
4: end point=start point+range×(cosθ, sinθ)
5: cells=Bresenham(start point,end point,grid)
6: for all cell in cells except last cell do
7: cell.logOdds=cell.logOdds - missOdds
8: for last cell in cells do
9: cell.logOdds=cell.logOdds + hitOdds

10: return map

odometry and model each movement of the robot as a
rotation α, followed by a translation along the direction
of the robot ∆s, followed by another rotation β. Since
the total orientation change ∆θ = α + β, the second
rotation command could be expressed as ∆θ − α. By
combining many such motions at small time scales, the
model attempts to smoothly follow the motion of the
robot. The pose update computations using action model
are shown in equation (1).

The action model also assumes that the motion of the
robot will be perturbed by noises, which are described
in equation (2). The noises ε1, ε2 and ε3 are drawn from
normal distributions that have zero means, and variances
related to the magnitude of motions and coefficient
k1, k2, shown in Table I. These values were chosen
because they provided a distribution of particles that
was distributed fairly closely around the actual value,
while being distributed enough around the pose that we
considered it to be sufficiently robust in the event of

Fig. 2: The map produced by the robot’s occupancy grid
mapping algorithm, with knowledge of its true position,
on obstacle slam 10mx10m 5cm.log.

TABLE I: k1 and k2

k1 k2
.1 .1

abrupt changes.

 xt = xt−1 + (∆s+ ε2) cos θt−1 + α+ ε1,
yt = yt−1 + (∆s+ ε2) sin θt−1 + α+ ε1,
θt = θt−1 + ∆θ + ε1 + ε3

(1)

 ε1 ∼ N(0, k1|α|)
ε2 ∼ N(0, k2|∆s|)
ε3 ∼ N(0, k1|∆θ − α|)

(2)

2) Sensor Model: For an algorithm to understand how
the evidence of sensors should influence its estimate of
the robot pose, it requires a model of the sensor: a way
to get the probability of the sensor providing a certain
output given that the world (in this case, the map and
pose) are known. To do so, we use a sensor model that
produces the log-odds of a sensor measurement. We used
the simplified likelihood field model given in lecture,
presented in Algorithm 3. Note that the algorithm allows
some leeway when a terminal cell is not a wall but
adjacent cells are by adding log-odds of those cells
weighted by .8. While we did not do any extensive
tests, we found that this modification can help to nudge
the distribution towards an appropriate distribution by



3

weighting particles close to matching the sensor data
more than particles that are simply completely wrong.

Algorithm 3 Simplified Likelihood Field Model

1: function SensorModel(zt, xt, m)
2: odds = 0
3: for ray in zt do

4: if ray terminates in cell with log-odd > 0 then
5: odds = odds+ terminal cell log-odds
6: else
7: if cell after terminal cell along ray has log-odds > 0

then
8: odds = odds+ after-terminal-cell log odds ∗.8
9: else if cell before terminal cell along ray has log-

odds > 0 then
10: odds = odds+ before-terminal-cell log odds ∗.8
11: end if
12: end if
13: return odds

3) Particle Filter: In this lab, we employed a particle
filter for localization. A particle filter is essentially an
approximation of Bayesian estimation which models the
state of a robot as a weighted distribution of ”particles”,
where each particle represents a probable state or pose
of the robot. The filter works by iteratively applying an
action model to all the particles, which creates a new dis-
tribution approximating the distribution of possible next
states, and then accounting for the sensor measurement
and updating all of the weights of the particles according
to how likely they were to have produced the sensor
measurement observed. A pose estimate for practical use
is generated based on the weights of the distributions.
This cycle repeats again with the creation of another
distribution created by low-variance re-sampling from
the old distribution based on the weights of each particle.
The low-variance sampling is important: while we didn’t
explicitly test this, prior experience with particle filters
has indicated that without low-variance sampling, it
becomes easy for most of the particles to simply be near-
copies of a single particle, resulting in a distribution that
is overly confident that it is in a certain spot.

Computation time is of essence when applying particle
filters. It is obvious that increasing particle numbers
can make the prediction more accurate while rising
the computation time at the same time. Thus, selecting
appropriate numbers for particle filters can help with
the efficiency. In Table II, we showed how computation
time changes according to the particle numbers and the
trend is shown in Fig. 3. We estimated that it will take
about 0.1s to update particle filters with 1470 samples,
so that the maximum particle numbers we can implement
is 1470 at 10Hz on the RPi.

Algorithm 4 Particle Filter Algorithm

1: function ParticleFilter (scan, particlePoses,
particleWeights, odometryUpdate, map)

2: for m = 1 to numParticles:
3: pick particle i with probability
particleWights[i]

4: for m = 1 to numParticles:
5: ActionModel(particlePoses[m],
odometryUpdate)

6: for m = 1 to numParticles:
7: SensorModel(particleWeights[m],
particlePoses[m], scan, map)
particleWeights[m] /= sum(particleWeights)

8: finalPose = [0,0,0]
9: for m = 1 to numParticles:

10: finalPose+= particleWeights[m]
×particlePoses[m]

=0

TABLE II: The time it takes to update the particle
filter for 100, 300, 500 and 1000 particles. Estimate
the maximum number of particles the filter can support
running at 10Hz on the RPi.

Particle Number Time(s)
100 0.0127
300 0.0249
500 0.0392
1000 0.0635

The performance of the particle filter on the log file
drive_square_10mx10m_5cm.log is depicted in
Fig. 4.

C. Combined Implementation

The block diagram for our SLAM system is shown
in Figure 1. When a new motion command is given, the
robot pose is updated by localization on the current map
through particle filter. Then map update could be done
based on the current pose estimation.

We ran our SLAM algorithm with
obstacle_slam_10mx10mx_5cm.log file, and
got figures and statistics shown in Figure 5 and Table
III. From the map and trajectory plot, it could be seen
that the map built by SLAM has a rotational drift, and
SLAM pose also deviate from true pose but maintains
almost the same shape of trajectory. Rotational drift in
map is possibly caused by fast turning at corners. For
the error curve and statistics, we compute the distance
between SLAM poses and true poses that are at closest
time instances as SLAM pose error, but it’s actually not
precise since SLAM pose lags behind true pose during



4

Fig. 3: Computation time increases as the particle num-
ber rises. If we want to run at 10Hz on the RPi, the
maximum number of particles our filter can support is
roughly 1470 according to the estimation.

turning. Thus some spikes appear in the error plot, and
the maximum of SLAM error is quite large.

We also ran the drive square task for one circuit,
and the plots for SLAM pose, odometry pose and true
pose from log file are shown in Figure 6. Similar to
SLAM pose error plot in Figure 5, we could see four
spikes in the plot, which are probably caused by lag
of SLAM pose when the bot turn at four corners.
Unlike true poses gotten from log file, the distance
between SLAM poses and odometry poses at the same
instance could accurately reflect the difference between
them. In lowest plot, the error between SLAM pose and
odometry pose increases when sample index is larger ,
indicating that the difference between them grows with
time. This observation also match SLAM and odometry
pose trajectory shown in the highest plot. The SLAM
pose error at the end of trajectory is 0.366 cm, showing
that the SLAM estimation is quite accurate.

We made a few changes tweaks to the SLAM algo-
rithm, mostly discussed in the sections on the particle
filter. One particular change that we mentioned but did
not discuss was that we chose to add the log-likelihood
of a cell, rather than some constant value, to our odds.
We did this in the hopes that it would punish sensor
readings that suggested areas that were clearly walls
were not walls, and that it would make log-odds only
slightly above zero not have a significant impact on
sensor likelihoods.

III. PLANNING AND EXPLORATION

Using the SLAM algorithm discussed above, we are
able to build a map of environment as the MBot moving
around. We then need to implement some strategies to

Fig. 4: The particle filter localization algorithm’s parti-
cles compared to the robot’s true pose as it makes its
way in a square pattern across the floor.

TABLE III: obstacle slam 10mx10mx 5cm.log statis-
tics (mean, standard deviation, and max) of the error
(as measured by Euclidean distance in meters) between
the pose as measured by SLAM and the true pose.
These distances were found by comparing each SLAM
pose published with the true pose with the closest
timestamp. Unfortunately, this matching method is not
perfect; SLAM updates often lag behind the true pose
updates.

Mean Std. Dev. Max
0.0444 0.0524 0.1601



5

Fig. 5: Comparison of true pose and SLAM pose using
obstacle_slam_10mx10mx_5cm.log file. In the
upper plot, green line is the ground truth, red line is
true pose, and the blue line is SLAM pose. In the
error plot, we give index to SLAM pose samples in
chronological order, and the X-axis is the sample index.
For each sample, we find the true pose that has the
closest timestamp and compute the euclidean distance
between them as SLAM pose error.

Fig. 6: Comparison of odometry pose, true pose, and
SLAM pose for one square using a log file. In the map,
orange is odometry, blue is SLAM, and red is true.
Note that SLAM and odometry remain very close for
some time, but eventually are very far from each other,
indicating that SLAM is necessary for long-running
robot navigation. Also, note the sudden spikes in the
SLAM pose error compared to the true pose. These
errors are likely caused by the fact that SLAM often
lagged during turns. In this run, the distance between
the SLAM pose and the true pose at the end of the run
was 0.366 cm.



6

allow MBot to reach a target position in the maze without
hitting obstacles.

A. Path Planning

Since we hope to find the shortest path in a maze and
we know the start and end poses, the most commonly
used strategy is A* graph searching algorithm. The cost
function used in A* is shown in (3):

f(n) = g(n) + h(n) (3)

A* considers the cost from the start pose on the graph
as g(n), and h(n) the heuristic cost that determines the
closeness of the current pose to the end pose. That is
to say, g(n) favors points closer to the start point and
h(n) favors points closer to the end point. Therefore,
compared to Dijkstra’s algorithm, A* won’t search over
the entire graph, but prefers searching the direction
towards the end pose, which saves lots of computation
time.

Heuristic cost h(n) contains two parts. The first part
is the euclidean distance towards the end pose, so the
pose closer to the end pose is preferred to search first.
The other part is the distance to the obstacle, which is
shown as follows.

ObstacleDistanceCost = 10×
|maxDistanceWithCost−ObstacleDistance|

(4)

In (4), the obstacle distance cost reach minimum when
ObstacleDistance equals maxDistanceWithCost, so the
planned path prefer to stay at this distance from obstacles
unless it must travel closer or farther to actually find a
path.

Our implementation of A* path planner is described
in Algorithm 5. The definitions of structure Node and
map point are given in Table VI. closed list is a 2D
vector that is the same size as map, storing information
about whether cells are explored or not as well as the
parent of them. With closed list, we can not only check
if a cell is explored efficiently, but also retrieve the
planned path conveniently. open list is a priority queue
in which the node with small f pops out first.

To evaluate the performance of our A* algorithm, we
use it to plan a path in a given map and command the
bot to move through the path, and the result is shown in
Figure 7. From the plots, it could be seen that our A*
algorithm produce a path that has sufficient margin to
forbidden red areas, thus it guarantee the safety of path.
Besides, the path could also circumvent the obstacle area
in advance, showing that the algorithm outputs path with
optimal cost.

Table IV and V shows the time statistics for all
successful and failed planning attempts in the given astar

tests. It’s shown that our A* algorithm is very efficient,
and it only takes about 0.05s in the most complex case
(The Median statistics seem to be not correct sometimes,
we just put it here for reference).

Usually, our algorithm pass 5 of 6 tests, with
some failures in test maze grid (Sometimes there could
also be an ”Incorrectly found valid path” failure in
test convex grid). The failures appear probably because
obstacle distance computation not accurate enough. Thus
when searching around a narrow passage, the algorithm
may mistakenly find a path or no path through it.

TABLE IV: Time statistics for successful planning at-
tempts, the unit is µs. We use number 1-6 to represent
corresponding test in the astar test.

Test Min Mean Max Median Std dev
5 683 683 683 0 0
1 563 964.667 1224 1107 288.01
6 468 468 468 0 0
3 27866 33850.5 39835 0 5984.5
4 31206 40536.3 50107 50107 7718.17

TABLE V: Time statistics for failed planning attempts,
the unit is µs. We use number 1-6 to represent corre-
sponding test in the astar test.

Test Min Mean Max Median Std dev
5 13 19.6667 30 13 7.4087
1 18 20 22 0 2
2 21 26.6 37 25 5.4626
6 28 31 36 36 3.55903
3 37 368.5 1012 1012 455.436
4 27 27 27 0 0

TABLE VI: Node and map point structure

Struct Node
data type member definition

Point<int> parent Parent Cell position
Point<int> self Current cell position

double g Path cost from start
double f Total cost value

Struct map point
Point<int> parent Parent cell position

int explored Exploration status

B. Exploration

Once we are able to sense the environment and has
a path planning algorithm that can go between arbitrary
two points, we are able to explore the whole map.

We firstly record those grid cells between free spaces
and unknown spaces as frontiers. Then We select a cell



7

Fig. 7: Comparison of A* planning path, SLAM path and odometry path. The left plot shows paths on the given
map, where free space is colored as white. The right plot also marks as red the spaces that the bot is not allow to
enter because they are too close to obstacles. In the plots, the side of paths with arrows are the goal position, and
the other sides are the start position.

Algorithm 5 A* Searching Algorithm
search for path(start pose, goal pose)
1. start = global to cell position(start pose)
2. goal = global to cell position(goal pose)
3. if start or goal not in map or too close to obstacles
4. return empty path
5. Initialize closed list as a 2D vector of map point
6. Initialize open list as a priority queue of Node
7. open list.push(start node)
8. while ! open list.empty()
9. current node = open list.top()
10. open list.pop()
11. if current node has been explored continue
12. Add current node.parent to closed list
13. Mark corresponding map point as explored
14. if current node is goal
15. Trace back to start through closed list
16. for all intermediate map point
17. Compute global position
18. Compute orientation wrt parent
19. Add state to path
20. return path
21. for child in neighbour of current node
22. if child is not in map continue
23. if child too close to obstacles continue
24. Compute g and f cost of child
25. open list.push(child)
26. return empty path

in free space and is near to a frontier point as the goal
and use A* algorithm to plan a path to it and explore the
environment meanwhile. When the bot almost reach the
current goal, we re-plan a path in the same way until
there is no frontier in the map. After building up the
whole map, MBot will return home by setting current
pose as the start and the home pose we stored initially

as the goal of the A* searching algorithm. Thus, MBot
is able to explore the map successfully. The algorithm
we implemented is illustrated in Algorithm 6.

Algorithm 6 Exploration Algorithm
1. State: Initialize
2. State: Exploring Map
3. if frontier is empty
4. return State = Return Home
5. while not whole map is explored
6. Increment search radius by cell distance
7. for all cell in frontier
8. for all neighbour within radius
9. if neighbour is in free space
10. Try planning a path to it
11. if succeed return path
12. return State = Return Home
13. State: Return Home
14. while not whole map is explored
15. Increment search radius by cell distance
16. for all neighbour of home within radius
17. if neighbour is in free space
18. Try planning a path to it
19. if succeed return path
20. return State = Complete Exploration
21. State: Complete Exploration

Some detailed explanations of our algorithm are pro-
vided in the following. Firstly, before planning a path
to a frontier, we need to ensure that the goal position
is valid and lies in the free space, and we also want
it to be as close to the frontiers as possible. Thus our
method is to search through cells within a radius from
all frontier points, if a cell in free space is found, we
try planning a path to it with A*, and execute a path if
the planning succeeds. Otherwise, the search radius is
increased and we perform the steps again until a path
is gotten. When the exploration finishes and we need



8

to plan a path back home, we also perform free space
searching around home position (including itself) for
valid goal in case home position somehow becomes not
reachable.

Another thing is that we re-plan the path every time
we are nearly finishing the current path. Otherwise, the
MBot re-plan every time it moves, which waste a lot of
time and is not necessary at all. Therefore, we set it to
renew the path when it finishes the previous one. The
reason we re-plan before it reaches the goal is that since
the frontier is far away from current pose, the rplidar
measurement at the goal position is likely to be not
accurate when the path is planned. Thus a goal that is
valid at the instance of planning may be found to be
inside obstacle area when the bot move closer and get
more precise measurement there. To avoid reaching an
invalid goal, we choose to re-plan a new path when the
bot has moved to a place within a given distance from
the current goal.

C. The Kidnapped Robot Problem

While we did not implement a kidnapped-robot solver
for the competition, from a localization standpoint the
problem is fairly simple to solve. If instead of initializing
each particle to the zero pose at the beginning of the
problem, the distribution of particles is made up of
randomly selected particles that are in non-occupied
portions of the map, then the robot should have a good
understanding of where it is likely to be. After that, the
robot simply needs to take in measurements that should
start to eliminate the possibilities of being in many states.
The distribution should converge to be multimodal: that
is, there may be multiple states that the robot is likely
to be in that would all plausibly produce the sensor
data given. At this point, the robot can take actions
based on which direction of travel is least likely to crash
into anything (hopefully, the robot can find a path that
will not cause it to run into any obstacles no matter
which state it is in) and take that route. By continuing
to explore in this way, the particle filter will slowly
eliminate particles that don’t match the evidence received
until the robot has found its true pose.

IV. DISCUSSION

Individual components of the project such as SLAM
and planning showed very good performance. When
SLAM was run on the RaspberryPi we faced a trade-off
between performance and computation-time. Planning
and exploration tasks were pretty efficient computation-
ally.

For the competition tasks, our motion controller en-
countered was found to be not tuned to perfection
and hence the robot stopped short of the final line in

the drive-square task. This was also because of the
high tolerance limit that we had set. The SLAM map
generated for this task was perfect though. Task 3 in the
competition involved exploring a maze by seeking new
frontiers. Our robot showed good performance in this
task by planning a safe path and never hit any walls.
Again the map produced was almost perfect. The maps
were uploaded to the course’s google drive folder.


