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Abstract

Advances in robotics and its applications are gaining pace each year. An
essential aspect of robotics is robot programming. Off-line programming is a
robot programming method where the robot program is created independent
from the actual robot cell. The robot cell is represented through a graphical
3D model in a simulator. The task that we want to accomplish through this
project is to make a kinematic simulator for KUKA KR5 Arc Robot and then
generate KRL code for the corresponding off-line program automatically.

The motivation for this project comes from an indigenous software called
RoboAnalyzer, developed at IITD. It is essentially an educational software to
study kinematics and dynamics of some important industrial robots and other
custom-made robots. The KUKA KR5 Arc robot, which is also available in
IITD’s PAR Lab is one of the robots which can be studied using the software.
But, the link between the software and the real-world robot was absent.
Although the motivation for our project has been derived from RoboAnalyzer,
we haven’t used the software for uses other than for verification purposes,
since the source code wasn’t available. Hence, our task here is two-fold: (i)
to simulate the kinematic motion of the KUKA KR5 Arc robot on a virtual
platform and (ii) to develop a code generator such that the real-world robot
may emulate this motion.

This report chronicles the methodology adopted and challenges faced dur-
ing the completion of the above task.



Nomenclature

List of Abbreviations

KR : KUKA Robot
KRC : KUKA Robot Controller
KRL : KUKA Robot Language
6R : 6 revolute joints
2R : 2 revolute joints
IK : Inverse Kinematics
FK : Forward Kinematics
STL : STereo Lithography (file format)
DOF : Degree of Freedom
JV : Joint Variable

List of Symbols

θi : Joint space co-ordinate of the ith axis
θo : Initial angle
θf : Final angle
ω : Angular velocity
T i
j : Transformation matrix of ith link w.r.t jth link
Ri

j : Rotation matrix of ith link w.r.t jth link
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Chapter 1

Introduction

According to the ISO definition, an industrial robots is an automatically
controlled, reprogrammable, multi-purpose manipulator, programmable in
three or more axes, which can be either fixed in place or mobile for use in
industrial automation applications[1].

Figure 1.1: Example of an industrial robot
1-Robot, 2-Cable set 3-Robot Controller, 4-Teach Pendant

The KR5 Arc (’KR’ is short for KUKA robot; ’5’ denotes 5kg rated
payload; ’Arc’ denotes that it is typically used in arc-welding applications)
fits the above definition perfectly. The following are the basic specifications
of KR5 Arc[2]:

• 6 axis serial chain (6R robot)

• Volume of working envelope: 8.4m3
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• Weight: approx. 127kg

• Max. total load: 37kg

• KRC embedded in Windows XP OS

• Designated teach pendant

• Programming Language: KRL

KR5 arc can be programmed online using the teach pendant or it can be
programmed offline, independent of the actual robot. Offline programming
offers several advantages over the online method[3]:

1. Programming can be carried out in parallel with production rather than
in series with it, hence minimising the robot down-time.

2. Offline programs are more flexible. Changes can be quickly incorpo-
rated and previously developed routines can be re-used.

3. Simulation, an essential part of OLP can be used to pre-check robot
movements and therefore improve safety and productivity.

The important steps in OLP, which we have achieved in our project, are:

• CAD Model Generation: A 3D CAD model of the robot (and its
environment) is required for subsequent simulation. The STL files for
the KR5 arc parts can be imported from the RoboAnalyzer package[4].

• Trajectory Planning: In this step, a function is generated for each
joint space coordinate (w.r.t time), according to the required end-
effector coordinates and joint space profiles. In the project, we ex-
perimented with trapezoidal and cycloidal profiles.

• Simulation: Simulation is used to verify the robot movements and
parameters on a virtual platform. In the project, we used MATLAB
SimMechanics for kinematic simulation of the robot links.

• Calibration: In this step, we take care of the off-sets or deviations
between the actual geometry of the robot and that used in the virtual
environment.
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Chapter 2

Literature Review

2.1 DH Parameters

For a serial chain robot manipulator, we may assume a co-ordinate frame at
the tip of each link. The transformation matrix connecting any two frames
usually has 6 independent variables. But in the case of single-DOF links,
we assume these coordinate frames according to a set convention, and this
allows us to represent the transformation matrices between consecutive links
using just 4 parameters called the Denavit-Hatenberg (DH) parameters[5].

These parameters are joint offset (b), joint angle (θ), link length (a)
and twist angle (α). RoboAnalyzer [4] has an excellent feature to visualize
these DH parameters. The DH parameters for the KUKA KR5 Robot are
tabulated below[6].

Joint No (i) bi (m) θi (degrees) ai (m) αi (degrees)
1 0.4 θ1 (JV) 0.18 90
2 0.135 θ2 (JV) 0.6 180
3 0.135 θ3 (JV) 0.12 -90
4 0.62 θ4 (JV) 0 90
5 0 θ5 (JV) 0 90
6 0.115 θ6 (JV) 0 0

Table 2.1: DH Parameters of KR5 Arc Robot
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2.2 Forward Kinematics

In forward kinematics[5, 7], we are given the joint space coordinates, that is
all DH parameters (including the joint variables) are known. Our goal is to
find the position and orientation of all the links, which can be represented
by the transformation matrix T i

0 for link i. Link 0 is assumed to be the fixed
link. T i

0 can be recursively calculated using these two equations:

T i
i−1 =


Cθi −SθiCαi SθiSαi aiCθi
Sθi CθiCαi −CθiSαi aiSθi
0 Sαi Cαi bi
0 0 0 1

 (2.1)

T i
0 = T i−1

0 T i
i−1 (2.2)

2.3 Trajectory Generation

Trajectory refers to the time history of position, velocity, and acceleration
of each degree of freedom[8, 9]. If each joint variable is known as a function
of time, then all positions and velocities can be calculated using forward
kinematics.

Given initial and final joint angles, θo and θf , we are interested in a
function θ(t), such that θ(to) = θo and θ(tf ) = θf .

There are several such commonly used functions. The KUKA KR5 robot
implements the trapezoidal trajectory (also known as ’bang-bang’ trajectory)
for its PTP motions. Trapezoidal trajectory is so called since the plot of the
time derivative of the joint variable is a trapezium, i.e. the velocity increases
linearly, stays constant, and then decreases linearly. Though this is a fast
way of reaching the final joint value, trapezoidal trajectory is subject to jerks
and hence parabolic blend trapezoidal profiles are often used.

RoboAnalyzer gives us the option to choose between cycloid, cosine, quin-
tic and cubic joint space trajectories. In the project, we have worked on the
cycloid profile. For a cycloid trajectory, velocity and acceleration curves are
continuous (hence eliminating jerk), and start and end at zero. The time-
function for cycloid profile is given as[10]:

θ(t) = θo +

(
t

tf
− 1

2π
sin

2πt

tf

)
(θf − θo) (2.3)

Researchers are experimenting with new trajectories. In 2013, an expo-
nential function was used as a basis for the trajectory profile and implemented
on a 6-dof robot KUKA KR5 sixx R650[11].
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2.4 Inverse Kinematics

The inverse kinematics problem is of finding the joint variables in terms of
the end-effector position and orientation. There could be more than one
solutions to this problem. One of these solutions could be selected on the
basis of minimum deviation of joint angles[12].
Several techniques have been developed to solve inverse kinematics problem:

• Numerical approach: There is a plethora of literature discussing
various numerical techniques to solve the IK problem. One of the ear-
liest numerical algorithm to find 16 different solutions for general 6R
manipulators in real time was presented in 1992[13].

• Quaternion approach: Quaternions, also known as versors, provide
a convenient mathematical notation for representing rotations in three
dimensions. Dual quaternions can be used to represent transformations
in a more compact form[14]. They are numerically more stable and
algorithmically more efficient.

• Geometric approach: In this project, a geometric approach was used
for doing IK of the 6-dof KR5 Arc robot. Using kinematic decoupling,
we can consider the position and orientation problems independently
if the last three axes intersect at a single point[7]. For a kinematic-
decoupled 6R manipulator, at most 8 IK solutions are possible.

Figure 2.1: 8 Inverse Kinematics solutions for the 6-dof robot
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Chapter 3

Objectives

The primary objective of this project is to make a module for off-line pro-
gramming of an industrial robot, specifically the KUKA KR5 robot. The
objective consists of the following tasks:

1. Forward and Inverse Kinematics of KR5 robot: A MATLAB
function is to be developed for FK (using DH Parameters) and IK (by
using the wrist de-coupled approach) for finding all solutions for a given
end-effector configuration.

2. Kinematic Simulation in SimMechanics: To visualize and verify
the rotation of joints and trajectories of the links, a kinematic simula-
tion needs to be done. In order to do this, a CAD model needs to be
assembled in SimMechanics using suitable transformation matrices for
each link, and actuate the revolute joints according to a suitable joint
space trajectory function.

3. Automatic Code Generation: Since coding in the robot language is
a difficult task, and writing a corresponding offline program after each
simulation is a strenuous task, it is desirable to have an application
that generates the KUKA program automatically.

4. Experimenting with Cycloidal Trajectory: The PTP motions of
the KUKA robot inherently follows trapezoidal joint-space trajectory.
We have to develop and implement a technique to make it follow cy-
cloidal trajectory.

5. Integration: We need to integrate the code generator with the simu-
lation environment and take care of the off-sets and joint limits of the
actual robot.
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Chapter 4

Progress Summary and Results

4.1 Work Done prior to December 2016

4.1.1 Kinematics of 2R robot in SimMechanics

SimMechanics provides a simulation environment[15, 16] in which links and
joints can be modelled similar to a solid modelling software or imported from
elsewhere (in STL format) and assembled by specifying suitable transforma-
tion matrices. Parameters like link lengths, velocities, angles, etc. can be
controlled from an external MATLAB code.

Figure 4.1: Simulink Block diagram for the 2R planar robot
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Figure 4.2: SimMechanics Animation for the 2R planar robot

The relations used for forward kinematics of the 2R planar robot were:

x = l1cos(θ1) + l2cos(θ1 + θ2) (4.1)

y = l1sin(θ1) + l2sin(θ1 + θ2) (4.2)

where l1 and l2 are the link lengths and θ1 and θ2 are the joint angles,
measured from positive x-axis in counter-clockwise direction.
The relations used for inverse kinematics were:

θ2 = ± cos−1

(
x2 + y2 − l21 − l22

2l1l2

)
(4.3)

θ1 = atan2(y, x)− tan−1

(
l2sinθ2

l1 + l2cosθ2

)
(4.4)

4.1.2 Path Planning Application in C#

Since the source-code of RoboAnalyzer is written in C# , and it is highly
preferable to integrate our code generator with RoboAnalyzer later, we needed
practice in developing applications in C# . Keeping this in mind, we took
on the task of making a user-friendly application for implementation of bug
algorithm.

Bug algorithm is the simplest type of path-planning algorithm, where
the virtual robot has only tactile sensors and no prior information about
the obstacles in its environment. Such algorithms can be used by robots in
unexplored environments, and come in handy if visual sensors are damaged.

8



Figure 4.3: Bug Algorithm Application

Our application has the following features:

• Takes input for start and end-point of a point robot, from the user and
simulates the motion of the robot from the start to the end. Simulation
can be paused or resumed at any time.

• Position of robot at each instant and total path length is displayed.

• User may change or add more obstacles.

4.1.3 KRL Training Session and Practice

The KUKA robot language is not just a trivial programming language. A
good understanding of the robot’s link parameters and coordinate systems is
a pre-requisite for programming the robot. The training sessions were held
in three phases:

1. In the first session, we received the basic safety training and hardware
handling instructions. Apart from that, we learnt how to set the tool
and base coordinates systems. We also made few basic path-traversal
programs using online teaching methods.

2. Next, we learnt about various in-built structures and variables which
could be used while giving motion commands. We practised off-line
programming.
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3. Next, we learnt about RSI communication protocols. These were later
used to get the data about the joint angles of the robot as a function
of time.

Even after formal training, several intricacies were unknown to us. The
KUKA manuals[17, 18, 19, 20] had to be read thoroughly and several com-
mands had to be practised before we could proceed to our actual coding
job.

As stated in our earlier presentation, the reasons for delay in our B.Tech
Project were the delays in training sessions and the loss of robot mastering
during practice.

PTP Motion and Common Joint Velocities
The PTP (Point-to-Point) command is a motion command used to move the
robot manipulator from one point to the other. The points can be specified
either in terms of 6 joint angles,, i.e. PTP AXIS (A1, A2, A3, A4, A5, A6)
or end-effector configuration,i.e. PTP POS (X, Y, Z, A, B, C, S, T). Here,
A,B,C denote the ZYX euler angles and S,T are used to identify one of the
eight possible inverse kinematics solutions.
Unless velocity of each axis is specified separately, the PTP command is exe-
cuted with common joint velocity, meaning that all axes cover the joint angle
from initial to final in the same time.

Figure 4.4: Plots for PTP AXIS command from
(-90,-90,90,0,90,0) to (-60,-120,120,45,60,45)

Joint Limits and Maximum Speeds
While doing OLP, it must be ensured that joint limits or speed limits aren’t
exceeded. Otherwise, robot may get damaged and/ or the programs may not
run. Also, it is essential to know the maximum speeds since the velocities
need to be programmed as a percentage of the maximum speeds.
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When each axis is independently moved through 30o at 20% of its respective
speed , the following velocity plot is obtained:

Figure 4.5: Veocity plot when each axis is independently moved through 30o

Since the current payload (a gripper) is lighter than the rated payload
(5kg), the maximum speeds are higher. Just like joint velocities, even joint
angles have a maximum and minimum value.
The joint limits[2] and maximum speeds have been summarized in the table
below:

Axis
Range of motion

(in degrees)
Speed with rated

payload (degrees/s)
Speed with current
payload (degrees/s)

1 -155 to 155 154 192
2 -180 to 65 154 192
3 -15 to 158 228 310
4 -350 to 350 343 365
5 -130 to 130 384 644
6 -350 to 350 721 1128

Table 4.1: Joint limits and Maximum speeds of KR5 Arc Robot

C PTP Command
The PTP command follows a trapezoidal joint-space profile, i.e. the speed
starts at zero, increases linearly, stays constant for a while, decreases linearly
and finally ends at zero. The C PTP or the continuous PTP command is
used to club two or more PTP commands such that velocity doesn’t become
zero at the intermediate points. This command was later exploited to mimic
a cycloidal trajectory through a series of short C PTP commands.
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DH model to KUKA Joint Angle offsets
While practising on the KUKA robot, it was realized that the KUKA angles
didn’t follow the DH Parameter model. They were actually offset by a fixed
angle. Also, a few of the angles were measured in the opposite direction. The
following table gives a conversion of joint angles from the DH model (also
used in SimMechanics simulation later) to KUKA angles:

Axis DH model(in degrees) KUKA (in degrees)
1 θ1 −θ1
2 θ2 −θ2
3 θ3 90 + θ3
4 θ4 −θ4
5 θ5 θ5
6 θ6 −θ6

Table 4.2: DH model to KUKA Joint Angle Offsets

4.2 Work Done during December 2016

4.2.1 Kinematic Simulation of KR5 in SimMechanics

Figure 4.6: Simulink Block Diagram for KR5 links and joints
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The 3D CAD model of KUKA KR5 Arc robot is available on KUKA
website[21]. But, we found it easier to import the STL files corresponding to
each link separately from the RoboAnalyzer Package[4].
Next, these links were joined using corresponding transformation matrices.
The transformation matrices for the base case (i.e. all joint angles equal
to zero) can be found using substituting the values of DH parameters from
Table 2.1 in Eqn. 2.1.

Figure 4.7: Simulink Block Diagram for Cycloidal trajectory input for
revolute joint actuators

Figure 4.8: SimMechanics Animation for KR5 link movements
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Next, a cycloidal function was constructed using basic simulink blocks
and fed into the actuators of the revolute joints. The data used to generate
the cycloidal function (angle vs time for each time-step) was collected in .xlsx
file and verified by comparing it with data from RoboAnalyzer.

Finally, the kinematic simulation was done for KR5 using the cycloidal
joint space trajectories to actuate the system of links and joints.

4.2.2 KRL Code Generation and Preliminaries

Figure 4.9: Control flow of different program and data files

The parent program is a MATLAB function, which interacts with the code
generator as well as the SimMechanics blocks. The main function takes input
from user through a .xlsx file and simulates the motion in the SimMechanics
virtual environment using another helper MATLAB function which generates
cycloidal profiles. After the simulation the main program also checks whether
all joint angles are within joint limits and joint velocities are in within the
maximum speed limits.

The code generator program is basically a C++ file which writes KRL
code into two files: ”KUKADAT.dat” and ”KUKASRC.src”. The .dat file
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stores information to be accessed by the .sr file, for e.g. the initial and final
joint angles for the PTP motion. The .src file is the KUKA source code file
which contains all the motion commands. Apart from that, it also takes care
of the RSI protocols so that relevant axis and position data is sent to another
computer.

An executable version (.exe file) of the C++ program is accessed from
the MATLAB main function. Hence, the .dat and .src files can be generated
directly by the MATLAB main function itself.

Some of the KUKA commands that be written by our code generator are:

1. PTP AXIS: Takes 6 parameters (joint angles) and follows trapezoidal
trajectory to the new configuration.

2. PTP POS: Takes 8 parameters (end-effector configuration), KUKA
does IK inherently and follows trapezoidal joint-space profile to the
new configuration.

3. C PTP: A series of PTP commands can be given with C PTP such
that the robot manipulator doesn’t stop at intermediate points.

4. LIN: The end-effector follows a linear path in cartesian-space to the
next point. KUKA does the necessary IK inherently.

5. CIRC: Takes 3 points as input and end-effector follows a circular path
in cartesian-space. KUKA does the necessary IK inherently.

6. HOME: This command takes the robot to the home position. The
code generator can set the home position as well as implement the
HOME command.

7. WAIT: The robot motion is paused for a given number of seconds.

8. RSI setup: A set of commands to setup the RSI communication to
export axis and end-effector data to an external RSI monitor.

9. RSI ON and RSI OFF: Commands to switch ‘on’ and ‘off’ the RSI
mode so that only the essential data is obtained.

4.2.3 Cycloid Trajectory Generation using CPTP

When we generated cycloid data using MATLAB, we generated an array
of tuples (θ, t), i.e tuple of joint angle and time. But in KUKA, we can’t
possibly feed in the time. But, we can surely feed in the time derivative of
joint angles, i.e. the axis velocities.

15



Note that, if there exists a function f such that f(θ, t) = c1 for some
constant c1, then there must exist a function g and a constant c2 such that
g(θ, θ̇) = c2

So, instead of feeding the tuples (θ, t), we can very well feed the corre-
sponding tuples (θ, θ̇) to the KUKA robot and theoretically obtain the same
trajectory.

For making the robot follow a cycloidal trajectory, the time interval was
discretized into small time-steps. for each time step (θ, θ̇) was generated
using the formulae:

θ = θo +

(
t

tf
− 1

2π
sin

2πt

tf

)
(θf − θo) (4.5)

θ̇ =
1

tf

(
1− cos2πt

tf

)
(θf − θo) (4.6)

where t is the time-step, tf is the total time, and θo and θf are initial and
final angles.

Now, these tuples (joint angles and velocities) were fed into the program
and C PTP (continuous Point-to-Point) motion command was used between
each tuple.

The graphs below compare the joint angles and angular velocities ob-
tained by the the theoretical approach (using MATLAB) with those obtained
from RSI feedback of the actual robot, when the above algorithm was imple-
mented on it. The plots correspond to motion of Axis 3 from 60o to 120o in
3s via cycloidal profile.

Figure 4.10: Joint Angle plots for KUKA and MATLAB
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Figure 4.11: Joint Velocity plots for KUKA and MATLAB

Discussions

1. There is an observable rightwards shift in the KUKA graph, when
compared to MATLAB, probably due to an initial jerk. Similar jerk
could be observed at the end of the motion. If these jerky parts be
removed both plots will align in a better fashion.

2. The velocity input needs to be given as percentage of the maximum ve-
locity. This percentage needs to be an integer. Hence, all floating point
numbers are rounded to their nearest integer before being accepted as a
legitimate axis velocity. This definitely contribute to errors, especially
when the velocities are low.

3. Having about 100 time-steps spread over the 3 seconds gave optimal
results. Too few time steps wouldn’t produce a cycloidal velocity profile
as velocity is constant between two consecutive time steps. Too many
time steps is even more dangerous as it somehow increases the total
time taken, probably due to increase in processing time.

4.2.4 Inverse Kinematics of 6 dof Wrist-partitioned Robot

Problem Statement

The rectangular coordinate system is same as that shown in Fig. 4.8. The
end-effector position is given: (x,y,z). Its orientation is specified in terms of
the ZYX euler angles: (α,β,γ). The goal is to find all possible combinations
of the 6 joint angles such that the given end-effector configuration is reached.
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Wrist Centre Position

The rotation matrix of the end-effector can be calculated using the formula:

R = Rz(α)Ry(β)Rx(γ) =

Cα −Sα 0
Sα Cα 0
0 0 1

 Cβ 0 Sβ
0 1 0
−Sβ 0 Cβ

1 0 0
0 Cγ −Sγ
0 Sγ Cγ


(4.7)

The wrist-center (PW ) is the point where the last three axes meet. It can be
calculated as follows:

PW = P − b6R

0
0
1

 (4.8)

where P = [x y z]T and b6 is the join toffset of the 6th link. For KR5 Arc,
b6 = 0.115m

Articulated 3R Joint Angles

The first three links of the robot can be treated as an articulated robot. The
joints of an articulate robot can be thought of as waist, shoulder and elbow.
Let PW = [xw yw zw]T . Then, we can easily find the first joint angle:

θ1 = tan−1

(
yw
xw

)
(4.9)

θ1+π is also a valid solution. Now the second and third links denote a planar
2R robot. Hence, θ2 and θ3 can be found using Eqns 4.3 and 4.4. (The offsets
need to be taken care of). For each solution of θ1, there will be two solutions
for (θ2, θ3).

Wrist Joint Angles

Since we have already determined (θ1, θ2, θ3), we can calculate R3
0. The rest

of the joint angles can be calculated using these equations:

R6
3 = (R3

0)
−1R (4.10)

R6
3 =

c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5s4c5c6 + c4s6 −s4c5c6 + c4c6 −s4s5
s5c6 −s5s6 c5

 (4.11)
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Chapter 5

Conclusions and Future Scope

We have been able to achieve the following in our B.Tech project Part-I:

1. Forward kinematics of KR5 arc robot using its DH parameters.

2. Kinematic simulation of the robot motion in SimMechanics. The sim-
ulation follows cycloidal joint space trajectories, given the initial and
final joint angles, total time, and the time step.

3. Inverse Kinematics of KR5 arc using geometric (wrist-partitioned) ap-
proach. The input is taken in the KUKA format - X,Y,Z,A,B,C.

4. Cycloidal joint space trajectory for the actual robot using a series of
PTP commands.

5. We have made an application (.exe file) for the code generator. This
can be run from MATLAB. Hence, we have integrated the simulation
and code generation part. The generated KUKA codes (.dat and .src)
have been tested on the robot.

The following are the future prospects of our project:

1. Our code generator application (coded in C++) can be integrated with
the RoboAnalyzer package. This will increase the educational soft-
ware’s usability.

2. We can experiment with other joint space trajectories, for e.g. those
based on polynomial functions, cosine functions, etc.

3. The features of the simulation environment can be expanded to include
forward and inverse dynamics, similar to RoboAnalyzer.
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Appendix A : Generated KRL
Codes (Example)

The following code snippets have been generated by C++ code. The C++
takes input from a .txt file. The input file is the one shown below:
Input.txt

HOME AXIS −90.000000 −90.000000 90.000000 0.000000
90.000000 0.000000
TRAP AXIS −90.000000 −90.000000 60.000000 0.000000
90.000000 0.000000 25.000000
CYLCOID AXIS −90.000000 −90.000000 60.000000 0.000000
90.000000 0.000000 25.000000 3.000000 100

• The line starting with ’HOME AXIS’ (followed by 6 floating point
numbers) is used to generate commands to set the home position of
the robot and bring the robot to the home position.

• The line starting with ’TRAP AXIS’ (followed by 7 floating point num-
bers) is used to take the robot to a new position through trapezoidal
joint space profile. The first six floating point numbers specify the final
joint angles and the seventh one is the maximum angular velocity as
a percentage of the maximum velocity that could be attained by that
axis.

• The line starting with ’CYCLOID AXIS’ (followed by 7 floating point
numbers) is used to take the robot to a new position through cycloidal
joint space profile. The first six floating point numbers specify the final
joint angles, the seventh one specifies the total time to be taken, and
the eighth one specifies the number of steps.

Two files, a .dat file (contains object declarations) and a .src file (contains
functions for motion commands) are generated.
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KUKADAT.dat

&ACCESS RVP
&REL 8
&PARAM TEMPLATE = C:\KRC\Roboter\Template\vorgabe
&PARAM EDITMASK = ∗
DEFDAT KUKADAT

;FOLD EXTERNAL DECLARATIONS;%{PE}%MKUKATPBASIS,%CEXT
;FOLD BASISTECH EXT;%{PE}%MKUKATPBASIS,%CEXT,%VEXT,%P
EXT BAS (BASCOMMAND : IN ,REAL : IN )
DECL INT SUCCESS
;ENDFOLD (BASISTECH EXT)
;FOLD USER EXT;%{E}%MKUKATPUSER,%CEXT,%VEXT,%P
; Make your m o d i f i c a t i o n s here

;ENDFOLD (USER EXT)
;ENDFOLD (EXTERNAL DECLARATIONS)
DECL BASIS SUGG T LAST BASIS={
POINT1 [ ] ”P1 ” ,
POINT2 [ ] ”P1 ” ,
CP PARAMS [ ] ”CPDAT0 ” ,
PTP PARAMS [ ] ”PDAT1 ” ,
CONT[ ] ” ” ,
CP VEL [ ] ”2 .0 ” ,
PTP VEL [ ] ”100 ” ,
SYNC PARAMS[ ] ”SYNCDAT ” ,
SPL NAME [ ] ”S0 ”}
DECL AXIS XHOME = {A1 −90.000 ,A2 −90.000 ,A3 90 .000 ,
A4 0 .000 ,A5 90 .000 ,A6 0.000}
DECL AXIS XP1 = {A1 −90.000 ,A2 −90.000 ,A3 60 .000 ,
A4 0 .000 ,A5 90 .000 ,A6 0.000}
DECL AXIS XP2 = {A1 −90.000 ,A2 −90.000 ,A3 90 .000 ,
A4 0 .000 ,A5 90 .000 ,A6 0.000}
ENDDAT

KUKASRC.src

&ACCESS RVP
&REL 8
&PARAM TEMPLATE = C:\KRC\Roboter\Template\vorgabe
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&PARAM EDITMASK = ∗
DEF KUKASRC( )

DECL INT I , J , N1
DECL REAL TMP RL1,TMP RL2, N,T
DECL AXIS CYC PT,CYC DEL

DECL RSIERR RSI RET
DECL INT hMonitor , hAxis , hPos ,PORT,CYCLE
DECL CHAR IP [ 1 6 ]

;FOLD INI
;FOLD BASISTECH INI

GLOBAL INTERRUPT DECL 3 WHEN
$STOPMESS==TRUE DO IR STOPM ( )

INTERRUPT ON 3
BAS (#INITMOV, 0 )

;ENDFOLD (BASISTECH INI )
;FOLD USER INI

; Make your m o d i f i c a t i o n s here

;ENDFOLD (USER INI )
;ENDFOLD ( INI )

;FOLD RSI SETUP % IP 1 9 2 . 1 6 8 . 1 . 6 0 % PORT 6000
IP [ ] = ”192 . 168 . 1 . 60”
PORT = 6000
CYCLE = 1

RSI RET = ST MONITOR( hMonitor , 0 , IP [ ] ,PORT,CYCLE)
RSI RET = ST ACTAXIS( hAxis , 0 )
RSI RET = ST ACTPOS( hPos , 0 )

RSI RET = ST SETPARAM( hMonitor , 1 , 1 . 0 )
RSI RET = ST NEWLINK( hPos , 1 , hMonitor , 2 )
RSI RET = ST NEWLINK( hPos , 2 , hMonitor , 3 )
RSI RET = ST NEWLINK( hPos , 3 , hMonitor , 4 )
RSI RET = ST NEWLINK( hPos , 4 , hMonitor , 5 )
RSI RET = ST NEWLINK( hPos , 5 , hMonitor , 6 )
RSI RET = ST NEWLINK( hPos , 6 , hMonitor , 7 )
RSI RET = ST NEWLINK( hAxis , 1 , hMonitor , 8 )
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RSI RET = ST NEWLINK( hAxis , 2 , hMonitor , 9 )
RSI RET = ST NEWLINK( hAxis , 3 , hMonitor , 1 0 )
RSI RET = ST NEWLINK( hAxis , 4 , hMonitor , 1 1 )
RSI RET = ST NEWLINK( hAxis , 5 , hMonitor , 1 2 )
RSI RET = ST NEWLINK( hAxis , 6 , hMonitor , 1 3 )

;ENDFOLD ( RSI SETUP)

;FOLD PTP HOME Vel=25 % DEFAULT;
$BWDSTART=FALSE
PDAT ACT=PDEFAULT
FDAT ACT=FHOME
BAS(#PTP PARAMS, 2 5 . 0 0 0 )
PTP XHOME

;ENDFOLD
;FOLD PTP P1 Vel=25 % DEFAULT;

$BWDSTART=FALSE
PDAT ACT=PDEFAULT
FDAT ACT=FHOME
BAS(#PTP PARAMS, 2 5 . 0 0 0 )
PTP XP1

;ENDFOLD
RSI RET = ST ON( )

N=100
T=3
N1 = N

;FOLD PTP P2 % PDAT1 % CYCLOID
CYC DEL. A1 = XP2. A1−XP1. A1
CYC DEL. A2 = XP2. A2−XP1. A2
CYC DEL. A3 = XP2. A3−XP1. A3
CYC DEL. A4 = XP2. A4−XP1. A4
CYC DEL. A5 = XP2. A5−XP1. A5
CYC DEL. A6 = XP2. A6−XP1. A6
FOR I = 1 TO N1 STEP 2

TMP RL1 = ( I +1)/(N−1)−(SIN( I ∗360 .0/(N−1)))/6.2831853
TMP RL2 = (1−COS( I ∗360 .0/(N−1)))/T
CYC PT. A1 = XP1. A1 + CYC DEL. A1∗TMP RL1
J =(CYC DEL. A1∗TMP RL2)/1 .920417
IF J==0 THEN

J=1

23



ENDIF
$VEL AXIS[1 ]= J
CYC PT. A2 = XP1. A2 + CYC DEL. A2∗TMP RL1
J =(CYC DEL. A2∗TMP RL2)/1 .920417
IF J==0 THEN

J=1
ENDIF
$VEL AXIS[2 ]= J
CYC PT. A3 = XP1. A3 + CYC DEL. A3∗TMP RL1
J =(CYC DEL. A3∗TMP RL2)/3 .095942
IF J==0 THEN

J=1
ENDIF
$VEL AXIS[3 ]= J
CYC PT. A4 = XP1. A4 + CYC DEL. A4∗TMP RL1
J =(CYC DEL. A4∗TMP RL2)/3 .646813
IF J==0 THEN

J=1
ENDIF
$VEL AXIS[4 ]= J
CYC PT. A5 = XP1. A5 + CYC DEL. A5∗TMP RL1
J =(CYC DEL. A5∗TMP RL2)/6 .438575
IF J==0 THEN

J=1
ENDIF
$VEL AXIS[5 ]= J
CYC PT. A6 = XP1. A6 + CYC DEL. A6∗TMP RL1
J =(CYC DEL. A6∗TMP RL2)/11 .28703
IF J==0 THEN

J=1
ENDIF
$VEL AXIS[6 ]= J
PTP CYC PT C PTP

ENDFOR
PTP XP2

;ENDFOLD (PTP CYCLOID)

RSI RET = ST OFF( )

END
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