
1

Discrete Model Prodective Control on a
Bicycle Dynamic Model

Apurva Sontakke,Nalin Bendapudi, Varun Shetty
{apurvaps, bnalin, vashetty}@umich.edu

Abstract—This report chronicles our the work done in
EECS561-Digital Control Systems Project. The objective
was to do trajectory optimization-based control of a car
so that it smoothly traverses a given track. We have
assumed that the dynamics of the car work according to the
bicycle model. A proportional controller was used to obtain
the initial trajectory of the car. The dynamic model was
linearized around this trajectory, and a model predictive
controller to find an optimized trajectory.

Index Terms—Model predictive control, linearization,
quadprog, bicycle model.

I. INTRODUCTION

In this section, we’ll talk about the dynamic model we
used, our problem statement, and the motivation behind
using MPC.

A. Problem Statement

Our team proposes to control an autonomous vehicle
modeled by the bicycle model. The objective will be
to track a pre-defined race-track whose Cartesian coor-
dinates are known. This builds on the controls project
of the Self Driving Cars course, which all three of
us had taken in Fall 2019. For the 535 project, we
had used a PID controller but here we plan on using
the discrete time MPC controller.We are planning to
generate a trajectory by using discrete time MPC given
the initial states such that it lies between the left border
and the right border of the track and reaches the specified
end position.The lateral tracking error that we hope our
controller will handle is +/- 2m.

Figure 1 shows the track we are using.

Fig. 1. Original Track

B. Bicycle Model

The non-linear bicycle model is given as follows:

Ẋ

u̇

Ẏ

v̇

ψ̇

ṙ


=



ucosψ − vsinψ
1
m (−fmg +NwFx − Fyfsin(δf)) + vr

usinψ + vcosψ
1
m (Fyfcos(δf) + Fyr)− ur

r
1
Iz
(aFyfcos(δf)− bFyr)


(1)

The lateral forces Fyf and Fyr are described using
Pacejka ”Magic Formula”

Fzf =
b

a+ b
mg (2)

Fyf = FzfDysin(Cy tan
−1(Byφyf)) + Svy (3)

Fzr =
a

a+ b
mg (4)

Fyr = FzrDysin(Cy tan
−1(Byφyr)) + Svy (5)

where
φyf = (1− Ey)(αf + S) (6)

φyr = (1− Ey)(αr + Shy) +
Ey
By

tan−1(By(αr + Shy))

(7)

2

where αf and αr are the front and rear lateral slip angles
which are given in degrees in the previous formulas. The
front and rear lateral slip angles which is described in
radians is given by:

αf = δf − tan−1(
v + ar

u
) (8)

αr = − tan−1(
v − br
u

) (9)

Additionally, combined longitudinal and lateral loading
of tires will be limited to F ∗

x and F ∗
yr in the following

manner:
Ftotal =

√
(NwFx)2 + (Fyr)2 (10)

Fmax = 0.7mg (11)

If Ftotal > Fmax:

F x =
Fmax
Ftotal

Fx (12)

F yr =
Fmax
Ftotal

Fyr (13)

The inputs into this model are δf , which is the front
wheel steering angle; and Fx, which is the traction force
generated at each tire by the vehicle’s motor. The vehicle
begins from the following initial condition:

x

u

y

v

ψ

r


=



287[m]

5[m/s]

−176[m]

0[m/s]

2[rad]

0[rad/s]


(14)

Fig. 2. An illustration of the bicycle model used to define the vehicle’s
dynamics.

C. Motivation to do MPC

MPC (Model Predictive Control) is a time control
strategy in which the future steps i.e the sequence of
the control steps is determined my minimizing the cost
function (objective function) at each time step over a
horizon dependent upon the equations and constraints of
the model.In short Model Predictive Control is used to

TABLE I
DYNAMIC MODEL CONSTANTS

Vehicle Parameter Value
δ [-0.5,0.5]
Fx [-5000,5000]
m 1400
Nw 2
f 0.01
Ix 2667
a 1.35
b 1.45
By 0.27
Cy 1.2
Dy 0.7
Ey -1.6
Shy 0
Svy 0
g 9.806

predict the future behaviour of the system. One of the
most important advantage of using MPC is that it can
handel multiple input and multiple output systems and
interactions between them.

We use the linear MPC because of its ability to find
a global and optimal minimum by placing constraints in
the inputs and states. We use the linear MPC algorithm
where we apply successive linearization to develop a
time-variant linear system.

We have assumed full state feedback in our control
procedure throughout. But this is seldom possible in
the real world. Usually we would have to design an
observer to get the state estimates. These estimates could
be different from our real states. This is where MPC
performs well. In our project we tested MPC with an
initial state different from that given for the reference
trajectory and it still gave good results.

II. METHODOLOGY

We obtain a linear model of our dynamics by cal-
culating an error model about the reference trajectory.
In order to generate the reference trajectory we used a
Proportional controller by calculating the lateral error
between the center-line of the track and the current
position of our vehicle. This error is used as the feedback
reference to then generate the steering command.

A. Trajectory Tracking using Proportional Controller

To achieve an initial estimate of the trajectory that
the MPC will have to track, a simple P controller was

3

used. Cross track error was used as the error term for
the controller. Cross track error is the lateral distance
between the track’s center line and the vehicle’s position.
This controller was forward simulated using MATLAB’s
ODE45 with a time step of 0.01s. The resultant states and
control inputs were stored and used in the next section.

B. Trajectory Tracking using Discrete MPC

A basic block diagram for MPC is shown below:

Fig. 3. MPC Block Diagram

1) Modelling: While obtaining the nominal trajectory
we set a constant longitudinal velocity and this leads
to a reduced order bicycle model. The tire dynamics
are assumed to be linear which is a fair assumption for
relatively low speeds. This reduced order model is:

Ẋ

Ẏ

v̇

ψ̇

ṙ

 =


ucosψ − vsinψ
usinψ + vcosψ

1
m (Fyfcos(δf) + Fyr)− ur

r
1
Iz
(aFyfcos(δf)− bFyr)

 (15)

2) Discretization: In order to create a decision vector
and formulate the problem such that it can be fed to
an optimizer, the model needed to be discretized. We
chose apply Euler’s integration to generate a discrete
time system by approximating the dynamics as follows:
x(k + 1) = x(k) + dt× (A(k)x(k) +B(k)u(k)) (16)

where x(k) ∈ Rn, A(k) ∈ Rn×n, B(k) ∈ Rn×m. We
discretized the system at a sampling time of 0.01s and
used a prediction horizon of 10 steps. For our model,
A(k) and B(k) are as follows:

A(k) =


0 0 −sin(ψref) A13 0

0 0 cos(ψref) A24 0

0 0 0 0 1

0 0 A43 0 A45

0 0 A53 0 A55

 (17)

where
A13 = −u0sin(ψref)− vrefcos(ψref)
A24 = −vrefsin(ψref) + u0cos(ψref)

A43 = −Car + aCafcos(δf)

mu0

A45 = −Carb+ Cafacos(δf)− u0
mu0

A53 =
Carb− aCafcos(δf)

Izu0

A55 = −b
2Car + a2Cafcos(δf)

Izu0

B(k) =


0

0

B3

0

B5

 (18)

where

B3 =
Caf (cos(δf)− δfsin(δf) + vref+arrefsin(δf)

u0

m

B4 =
aCaf (cos(δf)− δfsin(δf) + (

(vref+arref)sin(δf))
u0

Iz

These A(k) and B(k) matrices are basically the Jaco-
bians of A and B with respect to the states and input,
respectively.

3) MPC implementation: To find the optimized so-
lution we use quadratic programming that is specified
by:

min
1

2
xTHx+ fTx (19)

such that Aeq ∗ x = beq and lb 6 x 6 ub. H and Aeq
are matrices and beq, lb abd ub are vectors.

The initial conditions of the dynamics are satisfied in
the first three rows of Aeq and beq. All subsequent rows
of beq are zero. Each subsequent row of Aeq represents
the Euler integration steps in order from time step k to
time step k + 10. Aeq encodes the linear equalities and
is a M×N matrix where M are the number of equalities
i.e. in our case 55 (number of states × number of state
decision variables); N is the number of total decision
variables. beq is a vector with M rows. An example of
Aeq for the first time step is:Aeq(6 : 10, 6 : 10)

Aeq(6 : 10, 1 : 5)

Aeq(6 : 10, 56)

 =

 I5

A(2)

B(2)

 (20)

The remaining elements of Aeq can be filled in a
similar fashion.

H is the quadratic objective term. We construct it using
a quadratic penalty of Q and R on state matrix and input

4

matrix respectively. We have used the following values
for Q and R.

H should penalize all the states and inputs, and Q and
R do exactly the same. So, we construct H using Q and R
such that it is a diagonal matrix with Q and R repeated
throughout the prediction horizon penalizing the states
and inputs at the corresponding time steps.

H =


Q R

.

Q R


We have used a higher penalty on the heading as

compared to the other states because we observed that
the car would oscillate without that penalty. The heading
term indirectly acts as the derivative of the lateral error
and hence was heavily penalized.

We compute the states using ode45 and using the
inputs generated from MPC.

III. RESULTS AND DISCUSSION

The initial trajectory (after applying the proportional
control) and the final trajectory (after applying MPC) is
shown in figures 4 and 5 respectively.

Fig. 4. Initial trajectory generated using Proportional Controller
(zoomed in to show the most difficult-to-maneuver parts of the track)

Fig. 5. Final trajectory generated using MPC (zoomed in to show the
most difficult-to-maneuver parts of the track)

We observe that the MPC trajectory tracks the ref-
erence trajectory perfectly. This is expected since the
reference trajectory (or the initial trajectory, as it was
called earlier) does a very good job of traversing the
track.

Next, we see what happens if the MPC is provided
with a different initial state. The new initial state pro-
vided is: [284, 5,−180, 0, 2, 0] (each state has the same
units as in Eqn. 14) Basically we start from the coordi-
nates (284,−180) instead of (287,−176). The trajectory
tracked by MPC is shown in Fig. . We also plot the initial
part of the track in Fig. 7 to compare initial and final
trajectories when provided with different initial states.

Fig. 6. Final trajectory generated using MPC with a different Initial
State (zoomed in to show the most difficult-to-maneuver parts of the
track)

5

Fig. 7. Comparison of both trajectories in the initial part of the track
when provided with different initial states

Finally, we also tried to introduce random noise to the
state for each iteration inside MPC’s control loop. This is
supposed to model the disturbances in state estimation.
The final trajectory generated was still acceptably within
bounds. The noise is added using MATLAB’s randn
command, and is equal to 5% of the initial state times
N (0, 1). The trajectory is shown in Fig. 8.

Fig. 8. Final trajectory generated using MPC with noise added to
states (zoomed in to show the most difficult-to-maneuver parts of the
track)

IV. CONCLUSION

The objective in the problem statement has been
satisfied. The car modeled by the bicycle model tracks a
reference trajectory even though the MPC controller used
a reduced-order dynamic model, and initial state was
altered. The code for the MPC controller is documented
and open-sourced on GitHub. We highly recommend that
the reader have a look at the code (link provided in the
Appendix) and runs the code. This seems to be the only

way to reproduce and verify the results shown in this
report.

REFERENCES

[1] F. Kühne, J. M. G. da Silva Jr., and W. F. Lages, “Mobile robot
trajectory tracking using model predictive control,” GCAR - Grupo
de Controle Automação e Robótica.

[2] M. Charest, R. Dubay, and S. Everett, “Complex trajectory track-
ing using mpc with prediction adjustment,” IEEE International
Conference on Robotics and Biomimetics (ROBIO), 2013.

[3] Q. Hu, J. Xie, and C. Wang, “Dynamic path planning and trajec-
tory tracking using mpc for satellite with collision avoidance,” ISA
Transaction on Science Direct, vol. 84, pp. 128–141, 2019.

[4] M. F. Li Dai, Yuanqing Xia and M. S. Mahmoud, Discrete-Time
Model Predictive Control, Advances in Discrete Time Systems.
IntechOpen, DOI: 10.5772/51122, 2012, Chap. 4.

V. CONTRIBUTION

Apurva Sontakke Code: Problem formulation, Discretization,
Simulation and Analysis
Report documentation

Nalin Bendapudi Code: Simulation and Analysis
Report documentation

Varun Shetty Code: Simulation and Analysis
Report documentation

VI. APPENDIX

The code for this project is uploaded on GitHub and
can be accessed through this link.

https://github.com/VarunSatyadevShetty/EECS561_DigitalControls_Project

	Introduction
	Problem Statement
	Bicycle Model
	Motivation to do MPC

	Methodology
	Trajectory Tracking using Proportional Controller
	Trajectory Tracking using Discrete MPC
	Modelling
	Discretization
	MPC implementation

	Results and Discussion
	Conclusion
	References
	Contribution
	Appendix

